|
--- |
|
metrics: |
|
- code_eval |
|
library_name: transformers |
|
tags: |
|
- code |
|
model-index: |
|
- name: WizardCoder |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: openai_humaneval |
|
name: HumanEval |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.799 |
|
verified: false |
|
license: wtfpl |
|
--- |
|
May or may not be deleted wizardcoder-33b-v1.1. |
|
|
|
# Prompt format |
|
``` |
|
### Instruction: |
|
{instruction} |
|
|
|
### Response: |
|
|
|
``` |
|
|
|
# Original model card: WizardLM's Wizardcoder 33B V1.1 |
|
|
|
|
|
## WizardCoder: Empowering Code Large Language Models with Evol-Instruct |
|
|
|
<p style="font-size:28px;" align="center"> |
|
🏠 <a href="https://wizardlm.github.io/" target="_blank">Home Page</a> </p> |
|
<p align="center"> |
|
<p align="center"> |
|
🤗 <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> •🐱 <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> </p> |
|
<p align="center"> |
|
📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> • 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> • 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br> |
|
</p> |
|
<p align="center"> |
|
👋 Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a> |
|
</p> |
|
|
|
## News |
|
|
|
[2023/01/04] 🔥 We released **WizardCoder-33B-V1.1** trained from deepseek-coder-33b-base, the **SOTA OSS Code LLM** on [EvalPlus Leaderboard](https://evalplus.github.io/leaderboard.html), achieves **79.9 pass@1** on HumanEval, **73.2 pass@1** on HumanEval-Plus, **78.9 pass@1** on MBPP, and **66.9 pass@1** on MBPP-Plus. |
|
|
|
[2023/01/04] 🔥 **WizardCoder-33B-V1.1** outperforms **ChatGPT 3.5**, **Gemini Pro**, and **DeepSeek-Coder-33B-instruct** on HumanEval and HumanEval-Plus pass@1. |
|
|
|
[2023/01/04] 🔥 **WizardCoder-33B-V1.1** is comparable with **ChatGPT 3.5**, and surpasses **Gemini Pro** on MBPP and MBPP-Plus pass@1. |
|
|
|
| Model | Checkpoint | Paper | HumanEval | HumanEval+ | MBPP | MBPP+ | License | |
|
| ----- |------| ---- |------|-------| ----- | ----- |----- | |
|
| GPT-4-Turbo (Nov 2023) | - | - | 85.4 | 81.7 | 83.0 | 70.7 |-| |
|
| GPT-4 (May 2023) | - | - | 88.4 | 76.8 | - | - |-| |
|
| GPT-3.5-Turbo (Nov 2023) | - | - | 72.6 | 65.9 | 81.7 | 69.4 |-| |
|
| Gemini Pro | - | - | 63.4 | 55.5 | 72.9 | 57.9 |-| |
|
| DeepSeek-Coder-33B-instruct | - | - | 78.7 | 72.6 | 78.7 | 66.7 |-| |
|
| **WizardCoder-33B-V1.1** | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-33B-V1.1" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 79.9 | 73.2 | 78.9 | 66.9 | <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE" target="_blank">MSFTResearch</a> | |
|
| WizardCoder-Python-34B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 64.6 | 73.2 | 59.9 | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | |
|
| WizardCoder-15B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 | 52.4 | -- | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | |
|
| WizardCoder-Python-13B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | -- | -- | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | |
|
| WizardCoder-Python-7B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 55.5 | -- | -- | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | |
|
| WizardCoder-3B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 | -- | -- | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | |
|
| WizardCoder-1B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 | -- | -- | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | |
|
|
|
|
|
## ❗ Data Contamination Check: |
|
|
|
Before model training, we carefully and rigorously checked all the training data, and used multiple deduplication methods to verify and prevent data leakage on HumanEval and MBPP test set. |
|
|
|
🔥 |
|
❗<b>Note for model system prompts usage:</b> |
|
|
|
Please use **the same systems prompts strictly** with us, and we do not guarantee the accuracy of the **quantified versions**. |
|
|
|
**Default version:** |
|
|
|
``` |
|
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" |
|
``` |
|
|
|
|
|
## How to Reproduce the Performance of WizardCoder-33B-V1.1 |
|
|
|
We provide all codes [here](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder/src). |
|
|
|
We also provide all generated [results](https://github.com/nlpxucan/WizardLM/blob/main/WizardCoder/data/humaneval_mbpp_wizardcoder33b_v1.1_results.zip). |
|
|
|
``` |
|
transformers==4.36.2 |
|
vllm==0.2.5 |
|
``` |
|
|
|
(1) HumanEval and HumanEval-Plus |
|
|
|
- Step 1 |
|
|
|
Code Generation (w/o accelerate) |
|
```bash |
|
model="WizardLM/WizardCoder-33B-V1.1" |
|
temp=0.0 |
|
max_len=2048 |
|
pred_num=1 |
|
num_seqs_per_iter=1 |
|
|
|
output_path=preds/T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode |
|
|
|
mkdir -p ${output_path} |
|
echo 'Output path: '$output_path |
|
echo 'Model to eval: '$model |
|
|
|
# 164 problems, 21 per GPU if GPU=8 |
|
index=0 |
|
gpu_num=8 |
|
for ((i = 0; i < $gpu_num; i++)); do |
|
start_index=$((i * 21)) |
|
end_index=$(((i + 1) * 21)) |
|
|
|
gpu=$((i)) |
|
echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu} |
|
((index++)) |
|
( |
|
CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \ |
|
--start_index ${start_index} --end_index ${end_index} --temperature ${temp} \ |
|
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --greedy_decode |
|
) & |
|
if (($index % $gpu_num == 0)); then wait; fi |
|
done |
|
``` |
|
|
|
Code Generation (w/ vllm accelerate) |
|
```bash |
|
model="WizardLM/WizardCoder-33B-V1.1" |
|
temp=0.0 |
|
max_len=2048 |
|
pred_num=1 |
|
num_seqs_per_iter=1 |
|
|
|
output_path=preds/T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode_vllm |
|
|
|
mkdir -p ${output_path} |
|
echo 'Output path: '$output_path |
|
echo 'Model to eval: '$model |
|
|
|
CUDA_VISIBLE_DEVICES=0,1,2,3 python humaneval_gen_vllm.py --model ${model} \ |
|
--start_index 0 --end_index 164 --temperature ${temp} \ |
|
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --num_gpus 4 --overwrite |
|
``` |
|
|
|
- Step 2: Get the score |
|
|
|
Install [Eval-Plus](https://github.com/evalplus/evalplus) benchmark. |
|
```bash |
|
git clone https://github.com/evalplus/evalplus.git |
|
cd evalplus |
|
export PYTHONPATH=$PYTHONPATH:$(pwd) |
|
pip install -r requirements.txt |
|
``` |
|
Get HumanEval and HumanEval-Plus scores. |
|
```bash |
|
output_path=preds/T0.0_N1_WizardCoder-33B-V1.1_Greedy_Decode |
|
|
|
echo 'Output path: '$output_path |
|
python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt |
|
|
|
evalplus.evaluate --dataset humaneval --samples ${output_path}.jsonl |
|
``` |
|
|
|
(2) MBPP and MBPP-Plus |
|
|
|
The preprocessed questions are provided in [mbppplus.json](https://github.com/nlpxucan/WizardLM/blob/main/WizardCoder/data/mbppplus.json). |
|
|
|
- Step 1 |
|
|
|
Code Generation (w/o accelerate) |
|
```bash |
|
model="WizardLM/WizardCoder-33B-V1.1" |
|
temp=0.0 |
|
max_len=2048 |
|
pred_num=1 |
|
num_seqs_per_iter=1 |
|
|
|
output_path=preds/MBPP_T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode |
|
|
|
mkdir -p ${output_path} |
|
echo 'Output path: '$output_path |
|
echo 'Model to eval: '$model |
|
|
|
# 399 problems, 50 per GPU if GPU=8 |
|
index=0 |
|
gpu_num=8 |
|
for ((i = 0; i < $gpu_num; i++)); do |
|
start_index=$((i * 50)) |
|
end_index=$(((i + 1) * 50)) |
|
|
|
gpu=$((i)) |
|
echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu} |
|
((index++)) |
|
( |
|
CUDA_VISIBLE_DEVICES=$gpu python mbppplus_gen.py --model ${model} \ |
|
--start_index ${start_index} --end_index ${end_index} --temperature ${temp} \ |
|
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path "mbppplus.json" --greedy_decode |
|
) & |
|
if (($index % $gpu_num == 0)); then wait; fi |
|
done |
|
``` |
|
|
|
Code Generation (w/ vllm accelerate) |
|
```bash |
|
model="WizardLM/WizardCoder-33B-V1.1" |
|
temp=0.0 |
|
max_len=2048 |
|
pred_num=1 |
|
num_seqs_per_iter=1 |
|
|
|
output_path=preds/MBPP_T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode_vllm |
|
|
|
mkdir -p ${output_path} |
|
echo 'Output path: '$output_path |
|
echo 'Model to eval: '$model |
|
|
|
CUDA_VISIBLE_DEVICES=0,1,2,3 python mbppplus_gen_vllm.py --model ${model} \ |
|
--start_index ${start_index} --end_index ${end_index} --temperature ${temp} \ |
|
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path "mbppplus.json" --num_gpus 4 |
|
``` |
|
|
|
- Step 2: Get the score |
|
|
|
Install [Eval-Plus](https://github.com/evalplus/evalplus) benchmark. |
|
```bash |
|
git clone https://github.com/evalplus/evalplus.git |
|
cd evalplus |
|
export PYTHONPATH=$PYTHONPATH:$(pwd) |
|
pip install -r requirements.txt |
|
``` |
|
Get HumanEval and HumanEval-Plus scores. |
|
```bash |
|
output_path=preds/MBPP_T0.0_N1_WizardCoder-33B-V1.1_Greedy_Decode |
|
|
|
echo 'Output path: '$output_path |
|
python mbppplus_process_preds.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt |
|
|
|
evalplus.evaluate --dataset mbpp --samples ${output_path}.jsonl |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
Please cite the repo if you use the data, method or code in this repo. |
|
|
|
``` |
|
@article{luo2023wizardcoder, |
|
title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct}, |
|
author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin}, |
|
journal={arXiv preprint arXiv:2306.08568}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
<!-- original-model-card end --> |