SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
non-bug |
|
bug |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Consistent CFE_PSP_Main implementation
RTEMS PSP hardcodes \"/cf/cfe_es_startup.scr\", but mcp750 and pc-linux both use the CFE_PLATFORM_ES_NONVOL_STARTUP_FILE.
Inconsistent implementations.
From #102 (solved here):
cfe_psp_start.c for mcp750 VxWorks has StartupFilePath as an input parameter to CFE_PSP_Main, but calls CFE_ES_Main with CFE_PLATFORM_ES_NONVOL_STARTUP_FILE.
Confusing implementation... looks like at least the pc-linux PSP only uses CFE_PLATFORM_ES_NONVOL_STARTUP_FILE (but a different prototype).")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 110.5796 | 2778 |
Label | Training Sample Count |
---|---|
bug | 662 |
non-bug | 1517 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.4726 | - |
0.0092 | 50 | 0.2725 | - |
0.0184 | 100 | 0.2269 | - |
0.0275 | 150 | 0.2061 | - |
0.0367 | 200 | 0.2113 | - |
0.0459 | 250 | 0.1806 | - |
0.0551 | 300 | 0.1833 | - |
0.0642 | 350 | 0.1578 | - |
0.0734 | 400 | 0.1478 | - |
0.0826 | 450 | 0.1376 | - |
0.0918 | 500 | 0.1135 | - |
0.1010 | 550 | 0.1145 | - |
0.1101 | 600 | 0.1099 | - |
0.1193 | 650 | 0.0859 | - |
0.1285 | 700 | 0.0837 | - |
0.1377 | 750 | 0.0826 | - |
0.1468 | 800 | 0.0809 | - |
0.1560 | 850 | 0.0559 | - |
0.1652 | 900 | 0.0539 | - |
0.1744 | 950 | 0.0444 | - |
0.1836 | 1000 | 0.0376 | - |
0.1927 | 1050 | 0.0387 | - |
0.2019 | 1100 | 0.035 | - |
0.2111 | 1150 | 0.0317 | - |
0.2203 | 1200 | 0.029 | - |
0.2294 | 1250 | 0.0277 | - |
0.2386 | 1300 | 0.0108 | - |
0.2478 | 1350 | 0.0226 | - |
0.2570 | 1400 | 0.0105 | - |
0.2662 | 1450 | 0.02 | - |
0.2753 | 1500 | 0.016 | - |
0.2845 | 1550 | 0.0181 | - |
0.2937 | 1600 | 0.0184 | - |
0.3029 | 1650 | 0.0113 | - |
0.3120 | 1700 | 0.014 | - |
0.3212 | 1750 | 0.0101 | - |
0.3304 | 1800 | 0.0106 | - |
0.3396 | 1850 | 0.0101 | - |
0.3488 | 1900 | 0.0117 | - |
0.3579 | 1950 | 0.0115 | - |
0.3671 | 2000 | 0.0113 | - |
0.3763 | 2050 | 0.005 | - |
0.3855 | 2100 | 0.0062 | - |
0.3946 | 2150 | 0.0141 | - |
0.4038 | 2200 | 0.0096 | - |
0.4130 | 2250 | 0.0117 | - |
0.4222 | 2300 | 0.0051 | - |
0.4314 | 2350 | 0.0054 | - |
0.4405 | 2400 | 0.0049 | - |
0.4497 | 2450 | 0.0054 | - |
0.4589 | 2500 | 0.0027 | - |
0.4681 | 2550 | 0.0009 | - |
0.4772 | 2600 | 0.0021 | - |
0.4864 | 2650 | 0.005 | - |
0.4956 | 2700 | 0.0026 | - |
0.5048 | 2750 | 0.0025 | - |
0.5140 | 2800 | 0.0014 | - |
0.5231 | 2850 | 0.0005 | - |
0.5323 | 2900 | 0.0012 | - |
0.5415 | 2950 | 0.0027 | - |
0.5507 | 3000 | 0.0002 | - |
0.5598 | 3050 | 0.0012 | - |
0.5690 | 3100 | 0.0015 | - |
0.5782 | 3150 | 0.0001 | - |
0.5874 | 3200 | 0.0 | - |
0.5965 | 3250 | 0.0001 | - |
0.6057 | 3300 | 0.0011 | - |
0.6149 | 3350 | 0.0012 | - |
0.6241 | 3400 | 0.0043 | - |
0.6333 | 3450 | 0.0027 | - |
0.6424 | 3500 | 0.0007 | - |
0.6516 | 3550 | 0.0033 | - |
0.6608 | 3600 | 0.0005 | - |
0.6700 | 3650 | 0.0011 | - |
0.6791 | 3700 | 0.0023 | - |
0.6883 | 3750 | 0.0009 | - |
0.6975 | 3800 | 0.0012 | - |
0.7067 | 3850 | 0.0021 | - |
0.7159 | 3900 | 0.0003 | - |
0.7250 | 3950 | 0.0001 | - |
0.7342 | 4000 | 0.0001 | - |
0.7434 | 4050 | 0.0001 | - |
0.7526 | 4100 | 0.0023 | - |
0.7617 | 4150 | 0.0025 | - |
0.7709 | 4200 | 0.0001 | - |
0.7801 | 4250 | 0.0 | - |
0.7893 | 4300 | 0.0 | - |
0.7985 | 4350 | 0.001 | - |
0.8076 | 4400 | 0.0013 | - |
0.8168 | 4450 | 0.0002 | - |
0.8260 | 4500 | 0.0026 | - |
0.8352 | 4550 | 0.0002 | - |
0.8443 | 4600 | 0.0002 | - |
0.8535 | 4650 | 0.0 | - |
0.8627 | 4700 | 0.0001 | - |
0.8719 | 4750 | 0.0012 | - |
0.8811 | 4800 | 0.001 | - |
0.8902 | 4850 | 0.0001 | - |
0.8994 | 4900 | 0.001 | - |
0.9086 | 4950 | 0.0002 | - |
0.9178 | 5000 | 0.0002 | - |
0.9269 | 5050 | 0.001 | - |
0.9361 | 5100 | 0.0001 | - |
0.9453 | 5150 | 0.0021 | - |
0.9545 | 5200 | 0.0001 | - |
0.9637 | 5250 | 0.0001 | - |
0.9728 | 5300 | 0.0 | - |
0.9820 | 5350 | 0.0001 | - |
0.9912 | 5400 | 0.0002 | - |
Framework Versions
- Python: 3.11.6
- SetFit: 1.1.0
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.