Update code examples
#148
by
patrickvonplaten
- opened
README.md
CHANGED
@@ -75,36 +75,34 @@ Running the pipeline with the default PNDM scheduler:
|
|
75 |
|
76 |
```python
|
77 |
import torch
|
78 |
-
from torch import autocast
|
79 |
from diffusers import StableDiffusionPipeline
|
80 |
|
81 |
model_id = "CompVis/stable-diffusion-v1-4"
|
82 |
device = "cuda"
|
83 |
|
84 |
|
85 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
86 |
pipe = pipe.to(device)
|
87 |
|
88 |
prompt = "a photo of an astronaut riding a horse on mars"
|
89 |
-
|
90 |
-
image = pipe(prompt, guidance_scale=7.5).images[0]
|
91 |
|
92 |
image.save("astronaut_rides_horse.png")
|
93 |
```
|
94 |
|
95 |
**Note**:
|
96 |
-
If you are limited by GPU memory and have less than
|
97 |
|
98 |
|
99 |
```py
|
100 |
import torch
|
101 |
|
102 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16"
|
103 |
pipe = pipe.to(device)
|
|
|
104 |
|
105 |
prompt = "a photo of an astronaut riding a horse on mars"
|
106 |
-
|
107 |
-
image = pipe(prompt, guidance_scale=7.5).images[0]
|
108 |
|
109 |
image.save("astronaut_rides_horse.png")
|
110 |
```
|
@@ -112,17 +110,17 @@ image.save("astronaut_rides_horse.png")
|
|
112 |
To swap out the noise scheduler, pass it to `from_pretrained`:
|
113 |
|
114 |
```python
|
115 |
-
from diffusers import StableDiffusionPipeline,
|
116 |
|
117 |
model_id = "CompVis/stable-diffusion-v1-4"
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
121 |
pipe = pipe.to("cuda")
|
122 |
|
123 |
prompt = "a photo of an astronaut riding a horse on mars"
|
124 |
-
|
125 |
-
image = pipe(prompt, guidance_scale=7.5).images[0]
|
126 |
|
127 |
image.save("astronaut_rides_horse.png")
|
128 |
```
|
|
|
75 |
|
76 |
```python
|
77 |
import torch
|
|
|
78 |
from diffusers import StableDiffusionPipeline
|
79 |
|
80 |
model_id = "CompVis/stable-diffusion-v1-4"
|
81 |
device = "cuda"
|
82 |
|
83 |
|
84 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
|
85 |
pipe = pipe.to(device)
|
86 |
|
87 |
prompt = "a photo of an astronaut riding a horse on mars"
|
88 |
+
image = pipe(prompt).images[0]
|
|
|
89 |
|
90 |
image.save("astronaut_rides_horse.png")
|
91 |
```
|
92 |
|
93 |
**Note**:
|
94 |
+
If you are limited by GPU memory and have less than 4GB of GPU RAM available, please make sure to load the StableDiffusionPipeline in float16 precision instead of the default float32 precision as done above. You can do so by telling diffusers to expect the weights to be in float16 precision:
|
95 |
|
96 |
|
97 |
```py
|
98 |
import torch
|
99 |
|
100 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
|
101 |
pipe = pipe.to(device)
|
102 |
+
pipe.enable_attention_slicing()
|
103 |
|
104 |
prompt = "a photo of an astronaut riding a horse on mars"
|
105 |
+
image = pipe(prompt).images[0]
|
|
|
106 |
|
107 |
image.save("astronaut_rides_horse.png")
|
108 |
```
|
|
|
110 |
To swap out the noise scheduler, pass it to `from_pretrained`:
|
111 |
|
112 |
```python
|
113 |
+
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
|
114 |
|
115 |
model_id = "CompVis/stable-diffusion-v1-4"
|
116 |
+
|
117 |
+
# Use the Euler scheduler here instead
|
118 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
119 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16, revision="fp16")
|
120 |
pipe = pipe.to("cuda")
|
121 |
|
122 |
prompt = "a photo of an astronaut riding a horse on mars"
|
123 |
+
image = pipe(prompt).images[0]
|
|
|
124 |
|
125 |
image.save("astronaut_rides_horse.png")
|
126 |
```
|