File size: 5,948 Bytes
c0dd54c
dc34aea
 
 
 
 
7874fb0
c0dd54c
779014d
8bac0a3
 
 
 
 
 
 
 
 
247118f
8bac0a3
 
 
 
 
 
 
54bfe84
8bac0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7874fb0
d00c49d
7874fb0
8bac0a3
d00c49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7874fb0
d00c49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7874fb0
dc34aea
774ae10
c0dd54c
 
 
 
 
dc34aea
 
 
 
7874fb0
dc34aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7874fb0
 
dc34aea
 
 
c0dd54c
7874fb0
 
 
f21015a
8bac0a3
 
 
 
 
 
 
dc34aea
8bac0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54bfe84
dc34aea
20a108f
ce8b3f6
7874fb0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
from transformers.generation.utils import (
    GenerationMixin,
    validate_stopping_criteria,
    StoppingCriteriaList,
)
from transformers import TextStreamer


def custom_generate(
    self,
    input_ids,
    attention_mask=None,
    max_length=None,
    min_length=None,
    do_sample=None,
    early_stopping=None,
    num_beams=None,
    temperature=None,
    top_k=None,
    top_p=None,
    repetition_penalty=None,
    bad_words_ids=None,
    bos_token_id=None,
    pad_token_id=None,
    eos_token_id=None,
    streamer=None,
    length_penalty=None,
    no_repeat_ngram_size=None,
    num_return_sequences=None,
    decoder_start_token_id=None,
    use_cache=None,
    num_beam_groups=None,
    diversity_penalty=None,
    prefix_allowed_tokens_fn=None,
    output_attentions=None,
    output_hidden_states=None,
    output_scores=None,
    return_dict_in_generate=None,
    forced_bos_token_id=None,
    forced_eos_token_id=None,
    remove_invalid_values=None,
    synced_gpus=None,
    **kwargs,
):
    device = input_ids.device
    with torch.no_grad():
        finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=device)

        while not finished_generating.all() and input_ids.shape[1] < max_length:
            # Sample the next token
            new_ids = self(
                input_ids[~finished_generating],
                attention_mask=attention_mask[~finished_generating] if attention_mask is not None else None,
                **kwargs
            )['logits']

            # Mask out the start and end thought tokens so we don't accidentally sample them
            new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")

            for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
                # Find the index of the last token that is not padding
                base_answer_ids = input_ids[answer_idx]
                new_answer_ids = new_ids[list_idx]
                last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()

                new_ids_sampled = torch.multinomial(
                    torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temperature, dim=-1), 1)

                # Assign the new id to the last token
                if last_token_idx + 1 >= len(base_answer_ids):
                    # Add padding everywhere
                    new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long,
                                            device=device)
                    input_ids = torch.cat([input_ids, new_padding], dim=-1)
                    if attention_mask is not None:
                        attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)

                if attention_mask is not None:
                    attention_mask[answer_idx, last_token_idx + 1] = 1
                input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled

                if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id:
                    finished_generating[answer_idx] = 1

                # Check if the end token is generated
                if new_ids_sampled == self.tokenizer.convert_tokens_to_ids("</s>"):
                    finished_generating[answer_idx] = 1

            if streamer is not None:
                streamer.put(new_ids_sampled)

        generated_token_ids = input_ids.tolist()
        return generated_token_ids, attention_mask


def generate(
    self,
    input_ids,
    attention_mask=None,
    max_length=None,
    min_length=None,
    do_sample=None,
    early_stopping=None,
    num_beams=None,
    temperature=1.1,
    top_k=None,
    top_p=None,
    repetition_penalty=None,
    bad_words_ids=None,
    bos_token_id=None,
    pad_token_id=None,
    eos_token_id=None,
    length_penalty=None,
    no_repeat_ngram_size=None,
    num_return_sequences=None,
    decoder_start_token_id=None,
    use_cache=None,
    num_beam_groups=None,
    diversity_penalty=None,
    prefix_allowed_tokens_fn=None,
    output_attentions=None,
    output_hidden_states=None,
    output_scores=None,
    return_dict_in_generate=None,
    forced_bos_token_id=None,
    forced_eos_token_id=None,
    remove_invalid_values=None,
    synced_gpus=None,
    **model_kwargs,
):
    streamer = TextStreamer(self.tokenizer, skip_prompt=False, skip_special_tokens=True)

    generated_token_ids, attention_mask = custom_generate(
        self,
        input_ids=input_ids,
        attention_mask=attention_mask,
        max_length=max_length,
        min_length=min_length,
        do_sample=do_sample,
        early_stopping=early_stopping,
        num_beams=num_beams,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        bad_words_ids=bad_words_ids,
        bos_token_id=bos_token_id,
        pad_token_id=pad_token_id,
        eos_token_id=eos_token_id,
        length_penalty=length_penalty,
        no_repeat_ngram_size=no_repeat_ngram_size,
        num_return_sequences=num_return_sequences,
        decoder_start_token_id=decoder_start_token_id,
        use_cache=use_cache,
        num_beam_groups=num_beam_groups,
        diversity_penalty=diversity_penalty,
        prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        output_scores=output_scores,
        return_dict_in_generate=return_dict_in_generate,
        forced_bos_token_id=forced_bos_token_id,
        forced_eos_token_id=forced_eos_token_id,
        remove_invalid_values=remove_invalid_values,
        synced_gpus=synced_gpus,
        streamer=streamer,
        **model_kwargs,
    )

    return generated_token_ids, attention_mask