File size: 8,102 Bytes
eacd98b 8bac0a3 ffe6ef0 8bac0a3 247118f 8bac0a3 54bfe84 8bac0a3 5af661b 8196b65 5af661b 7874fb0 d00c49d 3da56b6 ea97f7f 3da56b6 8bac0a3 ea97f7f 504e404 d00c49d 3da56b6 7874fb0 d00c49d 504e404 d00c49d ea97f7f ffe6ef0 d00c49d 1c368e2 ea97f7f 14a93fc ea97f7f 14a93fc 1c368e2 14a93fc dd18e79 7bc62e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import torch
from transformers.generation.utils import (
GenerationMixin,
validate_stopping_criteria,
StoppingCriteriaList,
)
from transformers import TextStreamer
def custom_generate(
self,
input_ids,
attention_mask=None,
max_new_tokens=None,
min_length=None,
do_sample=None,
early_stopping=None,
num_beams=None,
temperature=None,
top_k=None,
top_p=None,
repetition_penalty=None,
bad_words_ids=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
streamer=None,
length_penalty=None,
no_repeat_ngram_size=None,
num_return_sequences=None,
decoder_start_token_id=None,
use_cache=None,
num_beam_groups=None,
diversity_penalty=None,
prefix_allowed_tokens_fn=None,
output_attentions=None,
output_hidden_states=None,
output_scores=None,
return_dict_in_generate=None,
forced_bos_token_id=None,
forced_eos_token_id=None,
remove_invalid_values=None,
synced_gpus=None,
**kwargs,
):
if input_ids is None or input_ids.nelement() == 0:
# If input_ids is None or an empty tensor, create a default input tensor
input_ids = torch.LongTensor([[self.tokenizer.bos_token_id]]).to(self.device)
attention_mask = torch.ones_like(input_ids).to(self.device)
device = input_ids.device
with torch.no_grad():
batch_size = input_ids.shape[0]
finished_generating = torch.zeros(batch_size, dtype=torch.bool, device=device)
max_length = input_ids.shape[1] + max_new_tokens
generated_token_ids = torch.full((batch_size, max_new_tokens), self.tokenizer.pad_token_id, dtype=torch.long, device=device)
cur_token_idx = 0
while cur_token_idx < max_new_tokens:
# Sample the next token
new_ids = self(
input_ids[~finished_generating],
attention_mask=attention_mask[~finished_generating] if attention_mask is not None else None,
**kwargs
)['logits']
# Mask out the start and end thought tokens so we don't accidentally sample them
new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")
for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
# Find the index of the last token that is not padding
base_answer_ids = input_ids[answer_idx]
new_answer_ids = new_ids[list_idx]
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
new_ids_sampled = torch.multinomial(
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temperature, dim=-1), 1)
# Assign the new id to the last token
if last_token_idx + 1 >= len(base_answer_ids):
# Add padding everywhere
new_padding = torch.full((batch_size, 1), self.tokenizer.pad_token_id, dtype=torch.long,
device=device)
input_ids = torch.cat([input_ids, new_padding], dim=-1)
if attention_mask is not None:
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
if attention_mask is not None:
attention_mask[answer_idx, last_token_idx + 1] = 1
input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
if cur_token_idx < max_new_tokens:
generated_token_ids[answer_idx, cur_token_idx] = new_ids_sampled
if new_ids_sampled == self.tokenizer.eos_token_id or cur_token_idx + 1 == max_new_tokens:
finished_generating[answer_idx] = 1
cur_token_idx += 1
if finished_generating.all():
break
if streamer is not None:
streamer.put(new_ids_sampled)
return generated_token_ids
def generate(
self,
input_ids,
attention_mask=None,
max_new_tokens=None,
min_length=None,
do_sample=None,
early_stopping=None,
num_beams=None,
temperature=1.1,
streamer=None,
top_k=None,
top_p=None,
repetition_penalty=None,
bad_words_ids=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
length_penalty=None,
no_repeat_ngram_size=None,
num_return_sequences=None,
decoder_start_token_id=None,
use_cache=None,
num_beam_groups=None,
diversity_penalty=None,
prefix_allowed_tokens_fn=None,
output_attentions=None,
output_hidden_states=None,
output_scores=None,
return_dict_in_generate=None,
forced_bos_token_id=None,
forced_eos_token_id=None,
remove_invalid_values=None,
synced_gpus=None,
n_ahead=4,
n_ahead_talk=4,
merged_talk_heads=True,
merged_lm_and_talk_heads=False,
merged_lm_and_think_heads=True,
use_concat_talk_head=True,
use_shallow_think=True,
use_shallow_talk=False,
use_complex_think_head=False,
use_complex_talk_head=True,
use_weighted_talk_head=True,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
dynamic_temperature=None,
**model_kwargs,
):
if max_new_tokens is None:
max_new_tokens = 128
# Set model attributes
self.max_thoughts = n_ahead + n_ahead_talk + 1
self.merged_talk_heads = merged_talk_heads
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
self.merged_lm_and_think_heads = merged_lm_and_think_heads
self.use_concat_talk_head = use_concat_talk_head
self.use_shallow_think = use_shallow_think
self.use_shallow_talk = use_shallow_talk
self.use_complex_think_head = use_complex_think_head
self.use_complex_talk_head = use_complex_talk_head
self.use_weighted_talk_head = use_weighted_talk_head
# Set model properties
self.use_end_thought_token = True
self.use_start_thought_token = True
self.n_ahead = n_ahead
self.n_passes = 1
self.eval_mode = True
self.first_run = False
self.rm_initialized = True
self.original_mode = False
# Check if the input is a string (for compatibility with text-generation-webui)
if isinstance(input_ids, str):
input_ids = self.tokenizer.encode(input_ids, return_tensors='pt')
# Move input_ids and attention_mask to the same device as the model
input_ids = input_ids.to(self.device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.device)
generated_token_ids = custom_generate(
self,
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
min_length=min_length,
do_sample=do_sample,
early_stopping=early_stopping,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
bad_words_ids=bad_words_ids,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
length_penalty=length_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
num_return_sequences=num_return_sequences,
decoder_start_token_id=decoder_start_token_id,
use_cache=use_cache,
num_beam_groups=num_beam_groups,
diversity_penalty=diversity_penalty,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
forced_bos_token_id=forced_bos_token_id,
forced_eos_token_id=forced_eos_token_id,
remove_invalid_values=remove_invalid_values,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
generated_text = self.tokenizer.decode(generated_token_ids[0], skip_special_tokens=False)
return generated_token_ids, generated_text |