Crystalcareai
commited on
Update train.py
Browse files
train.py
CHANGED
@@ -15,7 +15,7 @@ random.seed(random_seed)
|
|
15 |
|
16 |
dataset = load_dataset("Crystalcareai/Self-Discover-MM-Instruct-openai", split="train_sft")
|
17 |
|
18 |
-
n_ahead_talk_global =
|
19 |
n_passes_global = 2
|
20 |
n_ahead_global = 2
|
21 |
n_examples = 0
|
@@ -64,7 +64,8 @@ def model_init(params):
|
|
64 |
)
|
65 |
print("Loaded model")
|
66 |
|
67 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id
|
|
|
68 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
69 |
|
70 |
special_tokens_to_add = []
|
@@ -96,15 +97,15 @@ def model_init(params):
|
|
96 |
model.train()
|
97 |
return model
|
98 |
|
99 |
-
max_seq_length =
|
100 |
run_id = int(time.time())
|
101 |
training_args = TrainingArguments(
|
102 |
output_dir="./out",
|
103 |
-
num_train_epochs=
|
104 |
per_device_train_batch_size=1,
|
105 |
gradient_checkpointing=False,
|
106 |
-
gradient_accumulation_steps=
|
107 |
-
optim="
|
108 |
logging_steps=1,
|
109 |
save_strategy="steps",
|
110 |
save_steps=300,
|
@@ -114,8 +115,8 @@ training_args = TrainingArguments(
|
|
114 |
# beta1=0.9,
|
115 |
# beta2=0.95,
|
116 |
# auto_find_batch_size=True
|
117 |
-
learning_rate=
|
118 |
-
max_grad_norm=0
|
119 |
warmup_steps=10,
|
120 |
lr_scheduler_type="cosine",
|
121 |
push_to_hub=False,
|
@@ -147,4 +148,4 @@ trainer = SFTTrainer(
|
|
147 |
max_seq_length=max_seq_length,
|
148 |
)
|
149 |
|
150 |
-
trainer.train()
|
|
|
15 |
|
16 |
dataset = load_dataset("Crystalcareai/Self-Discover-MM-Instruct-openai", split="train_sft")
|
17 |
|
18 |
+
n_ahead_talk_global = 4
|
19 |
n_passes_global = 2
|
20 |
n_ahead_global = 2
|
21 |
n_examples = 0
|
|
|
64 |
)
|
65 |
print("Loaded model")
|
66 |
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
68 |
+
tokenizer.padding_side = 'left' # Adjust padding side to 'left' to avoid batch generation issues with Flash Attention
|
69 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
70 |
|
71 |
special_tokens_to_add = []
|
|
|
97 |
model.train()
|
98 |
return model
|
99 |
|
100 |
+
max_seq_length = 2048
|
101 |
run_id = int(time.time())
|
102 |
training_args = TrainingArguments(
|
103 |
output_dir="./out",
|
104 |
+
num_train_epochs=3,
|
105 |
per_device_train_batch_size=1,
|
106 |
gradient_checkpointing=False,
|
107 |
+
gradient_accumulation_steps=16,
|
108 |
+
optim="adamw_torch_fused",
|
109 |
logging_steps=1,
|
110 |
save_strategy="steps",
|
111 |
save_steps=300,
|
|
|
115 |
# beta1=0.9,
|
116 |
# beta2=0.95,
|
117 |
# auto_find_batch_size=True
|
118 |
+
learning_rate=2e-07,
|
119 |
+
max_grad_norm=1.0, # Gradient clipping with a maximum gradient norm of 0.3
|
120 |
warmup_steps=10,
|
121 |
lr_scheduler_type="cosine",
|
122 |
push_to_hub=False,
|
|
|
148 |
max_seq_length=max_seq_length,
|
149 |
)
|
150 |
|
151 |
+
trainer.train()
|