LLAMA 3 Story Point Estimator - mule - titanium

This model is fine-tuned on issue descriptions from mule and tested on titanium for story point estimation.

Model Details

  • Base Model: LLAMA 3.2 1B

  • Training Project: mule

  • Test Project: titanium

  • Task: Story Point Estimation (Regression)

  • Architecture: PEFT (LoRA)

  • Input: Issue titles

  • Output: Story point estimation (continuous value)

Usage

from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftModel

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/000-LLAMA3SP-mule-titanium")
model = AutoModelForSequenceClassification.from_pretrained("DEVCamiloSepulveda/000-LLAMA3SP-mule-titanium")

# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")

# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()

Training Details

  • Fine-tuning method: LoRA (Low-Rank Adaptation)
  • Sequence length: 20 tokens
  • Best training epoch: 0 / 20 epochs
  • Batch size: 32
  • Training time: 18.795 seconds
  • Mean Absolute Error (MAE): 3.505
  • Median Absolute Error (MdAE): 2.195
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DEVCamiloSepulveda/000-LLAMA3SP-mule-titanium

Quantized
(124)
this model

Evaluation results