qwen2-2b-instruct-trl-sft-ChartQA

This model is a fine-tuned version of Qwen/Qwen2-VL-2B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
4.1946 0.1546 10 3.2365
2.5247 0.3092 20 1.7800
1.1177 0.4638 30 0.5485
0.4772 0.6184 40 0.4416
0.4286 0.7729 50 0.4205
0.398 0.9275 60 0.3643
0.3027 1.0821 70 0.2035
0.1021 1.2367 80 0.0645
0.0591 1.3913 90 0.0597
0.0592 1.5459 100 0.0581
0.0575 1.7005 110 0.0595
0.0608 1.8551 120 0.0586
0.0583 2.0097 130 0.0588
0.0599 2.1643 140 0.0570
0.0569 2.3188 150 0.0579
0.0577 2.4734 160 0.0574
0.0536 2.6280 170 0.0565
0.0567 2.7826 180 0.0583
0.0611 2.9372 190 0.0574

Framework versions

  • PEFT 0.11.1
  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DLingo/qwen2-2b-instruct-trl-sft-ChartQA

Base model

Qwen/Qwen2-VL-2B
Adapter
(49)
this model