estudiante_MC318_profesor_MViT_akl_RWF2000

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2574
  • Accuracy: 0.8975
  • F1: 0.8975
  • Precision: 0.8981
  • Recall: 0.8975
  • Roc Auc: 0.9620

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 159
  • training_steps: 1590
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
10.7532 1.0145 79 0.5529 0.79 0.7877 0.8034 0.79 0.8806
8.2982 2.0289 158 0.4024 0.825 0.8250 0.8251 0.825 0.9141
6.7699 4.0082 237 0.3657 0.8425 0.8415 0.8509 0.8425 0.9352
5.05 5.0226 316 0.3208 0.8625 0.8620 0.8674 0.8625 0.9438
4.4531 7.0019 395 0.3502 0.855 0.8539 0.8656 0.855 0.9484
3.8667 8.0164 474 0.3259 0.845 0.8434 0.8594 0.845 0.9545
3.4567 9.0308 553 0.3032 0.8675 0.8667 0.8765 0.8675 0.9578
2.922 11.0101 632 0.2989 0.8675 0.8666 0.8778 0.8675 0.9609
2.7125 12.0245 711 0.3040 0.8725 0.8719 0.8794 0.8725 0.9617
2.4511 14.0038 790 0.2715 0.87 0.8692 0.8797 0.87 0.9637
2.3903 15.0182 869 0.2697 0.88 0.8796 0.8856 0.88 0.9647
2.2202 16.0327 948 0.2715 0.88 0.8796 0.8847 0.88 0.9653
2.2101 18.0119 1027 0.2757 0.875 0.8745 0.8814 0.875 0.9662
2.1343 19.0264 1106 0.2397 0.905 0.9050 0.9056 0.905 0.9648
1.8394 21.0057 1185 0.2570 0.865 0.8641 0.8746 0.865 0.9667
1.9406 22.0201 1264 0.2746 0.8825 0.8821 0.8876 0.8825 0.9674
1.7509 23.0346 1343 0.2545 0.89 0.8897 0.8939 0.89 0.9692

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.0.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
35
Safetensors
Model size
11.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.