SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Data-Lab/multilingual-e5-small-cross-encoder-v0.1")
# Run inference
sentences = [
'query: хачапури по аджарски',
'passage: Напиток на чайном грибе с цветами липы и чабрецом, 350 мл; Тонизирующий напиток природного брожения. Приготовлен на чистой культуре чайного гриба с цветами липы, чабрецом и иван-чаем. Вкус: кислинка и терпкость трав.; Квас; Цена: 98.0; Рейтинг: 4.7',
'passage: Икра трески, 240 г; Нежная подсоленная икра тихоокеанской трески. С узнаваемым, чуть сладковатым вкусом и зернистой текстурой. Идеально подходит для сэндвичей, канапе и салатов.; Икра; Цена: 207.0; Рейтинг: 4.8',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8058 |
spearman_cosine | 0.8022 |
pearson_manhattan | 0.7664 |
spearman_manhattan | 0.8008 |
pearson_euclidean | 0.7686 |
spearman_euclidean | 0.8022 |
pearson_dot | 0.8058 |
spearman_dot | 0.8022 |
pearson_max | 0.8058 |
spearman_max | 0.8022 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,577 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 8.99 tokens
- max: 18 tokens
- min: 34 tokens
- mean: 67.08 tokens
- max: 256 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label query: ополаскиватель для рта
passage: Блин сырный по-голландски; Голландский сырный блинчик с пикантным чесноком и домашним майонезом; Блины; Цена: 218.0; Рейтинг: 4.8
0.0
query: таблетки для посудомоечной машины
passage: Десерт многослойный с фруктовым соком; Сочное желе из натуральных соков с фруктозно-глюкозным сиропом. Кисло-сладкий десерт.; Пирожные, муссы, суфле; Цена: 75.0; Рейтинг: 4.8
0.0
query: пельмени с индейкой мини
passage: Кумин молотый Золото Индии; Сильный сладковато-горький вкус. Идеально с рыбой, молочными продуктами и овощами.; Специи и приправы; Цена: 137.0; Рейтинг: 4.9
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | dev_spearman_max |
---|---|---|
1.0 | 103 | 0.8078 |
2.0 | 206 | 0.8052 |
3.0 | 309 | 0.8022 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.0
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Data-Lab/multilingual-e5-small-cross-encoder-v0.1
Base model
intfloat/multilingual-e5-smallEvaluation results
- Pearson Cosine on devself-reported0.806
- Spearman Cosine on devself-reported0.802
- Pearson Manhattan on devself-reported0.766
- Spearman Manhattan on devself-reported0.801
- Pearson Euclidean on devself-reported0.769
- Spearman Euclidean on devself-reported0.802
- Pearson Dot on devself-reported0.806
- Spearman Dot on devself-reported0.802
- Pearson Max on devself-reported0.806
- Spearman Max on devself-reported0.802