KobanBanan
commited on
Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +449 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: intfloat/multilingual-e5-small
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- pearson_cosine
|
6 |
+
- spearman_cosine
|
7 |
+
- pearson_manhattan
|
8 |
+
- spearman_manhattan
|
9 |
+
- pearson_euclidean
|
10 |
+
- spearman_euclidean
|
11 |
+
- pearson_dot
|
12 |
+
- spearman_dot
|
13 |
+
- pearson_max
|
14 |
+
- spearman_max
|
15 |
+
pipeline_tag: sentence-similarity
|
16 |
+
tags:
|
17 |
+
- sentence-transformers
|
18 |
+
- sentence-similarity
|
19 |
+
- feature-extraction
|
20 |
+
- generated_from_trainer
|
21 |
+
- dataset_size:6577
|
22 |
+
- loss:CosineSimilarityLoss
|
23 |
+
widget:
|
24 |
+
- source_sentence: 'query: алерана бальзам'
|
25 |
+
sentences:
|
26 |
+
- 'passage: Мороженое "Джиандуйя" фундучно-шоколад.; Шоколадный пломбир с фундуком
|
27 |
+
в шоколаде. Нежная сливочная текстура.; Мороженое; Цена: 138.0; Рейтинг: 4.9'
|
28 |
+
- 'passage: Нюда спрей д/местного применения педикулицидный 50мл; Средство с физическим
|
29 |
+
принципом действия для уничтожения головных вшей, личинок и гнид; Лекарственные
|
30 |
+
средства; Цена: 1136.0; Рейтинг: 0.0'
|
31 |
+
- 'passage: АнвиМакс Мед-Лимон пор.д/приг.р-ра д/приема внутрь пак.№12; Препарат
|
32 |
+
для лечения гриппа и ОРВИ. Комбинирует противовирусное и симптоматическое действие.;
|
33 |
+
Лекарственные средства; Цена: 806.0; Рейтинг: 0.0'
|
34 |
+
- source_sentence: 'query: тунец'
|
35 |
+
sentences:
|
36 |
+
- 'passage: Мармелад жевательный "Ассорти"; Жевательный мармелад с насыщенным фруктовым
|
37 |
+
вкусом. ; Мармелад, халва, зефир, восточные сладости; Цена: 106.0; Рейтинг: 4.9'
|
38 |
+
- 'passage: Фаритол сироп 150мл Подорожник/Алтей/Чабрец; Сироп подорожника, алтея
|
39 |
+
и чабреца для детей с 3-х лет и взрослых. ЭКСТРАКТ ЛИСТЬЕВ ПОДОРОЖНИКА обладает
|
40 |
+
успокаивающим действием на горло и голосовые связки. Оказывает отхаркивающее действие
|
41 |
+
и способствует более быстрому выведению мокроты из бронхов. ЭКСТРАКТ ЧАБРЕЦА обладает
|
42 |
+
бактерицидным, противовоспалительным, отхаркивающим свойствами. Оказывает успокаивающее
|
43 |
+
и смягчающее действие на слизистые. Способствует снижению вязкости мокроты, разрыхлению
|
44 |
+
воспалительных налетов, ускоряя выведение из организма продуктов воспаления и
|
45 |
+
слизистых масс. ЭКСТРАКТ КОРНЕЙ АЛТЕЯ мягко обволакивая слизистые оболочки, препятствует
|
46 |
+
их раздражению и обладает смягчающим и увлажняющим свойствами. Активизируя двигательную
|
47 |
+
активность реснитчатого эпителия верхних дыхательных путей, способствует разжижению
|
48 |
+
слизи, стимулирует высвобождение дыхательных каналов от мокроты.; Витамины, БАДы;
|
49 |
+
Цена: 278.0; Рейтинг: 0.0'
|
50 |
+
- 'passage: Батончик протеиновый Snaq Fabriq Арахис и карамель 50 г; Протеиновый
|
51 |
+
батончик с натуральными ингредиентами, без сахара и глютена.; Батончики; Цена:
|
52 |
+
99.0; Рейтинг: 4.9'
|
53 |
+
- source_sentence: 'query: вареники сулугуни'
|
54 |
+
sentences:
|
55 |
+
- 'passage: Чипсы Naitori из морских водорослей 3 г; Хрустящие чипсы из водорослей
|
56 |
+
нори, обжаренные на оливковом масле с солью. ; Снеки; Цена: 55.0; Рейтинг: 4.9'
|
57 |
+
- 'passage: Вареники с вишневой начинкой, 500 г; Постные вареники с вишней, тонким
|
58 |
+
тестом; Пельмени, вареники и манты; Цена: 336.0; Рейтинг: 4.7'
|
59 |
+
- 'passage: Протеин сывороточный "Ваниль"; Сывороточный протеин с ванильным вкусом;
|
60 |
+
Протеин; Цена: 1464.0; Рейтинг: 4.9'
|
61 |
+
- source_sentence: 'query: каша молочно'
|
62 |
+
sentences:
|
63 |
+
- 'passage: Вишня сушеная, 1 кг; Спелая, сочная вишня, высушена, чтобы сохранить
|
64 |
+
цвет и вкус; ��рехи, сухофрукты; Цена: 3000.0; Рейтинг: 4.6'
|
65 |
+
- 'passage: Крем для тела с кислотами Acid Cloud, 250 мл; Крем с энзимами и кислотами
|
66 |
+
для красоты и здоровья кожи. Борется с высыпаниями, шелушениями и постакне, возвращает
|
67 |
+
мягкость коже.; Кремы косметические; Цена: 1792.0; Рейтинг: 5.0'
|
68 |
+
- 'passage: Шоколад ремесленный горький 74%; Ремесленный шоколад из перуанских и
|
69 |
+
колумбийских какао-бобов; Шоколад; Цена: 310.0; Рейтинг: 4.9'
|
70 |
+
- source_sentence: 'query: хачапури по аджарски'
|
71 |
+
sentences:
|
72 |
+
- 'passage: Напиток на чайном грибе с цветами липы и чабрецом, 350 мл; Тонизирующий
|
73 |
+
напиток природного брожения. Приготовлен на чистой культуре чайного гриба с цветами
|
74 |
+
липы, чабрецом и иван-чаем. Вкус: кислинка и терпкость трав.; Квас; Цена: 98.0;
|
75 |
+
Рейтинг: 4.7'
|
76 |
+
- 'passage: Дезодорант-антиперспирант Nivea Men Серебряная защита 50 мл; Антибактериальный
|
77 |
+
дезодорант с ионами серебра для защиты от пота и запаха на 99,9%. Успокаивает
|
78 |
+
кожу и имеет свежий мужской аромат. Не содержит спирта.; Дезодоранты; Цена: 395.0;
|
79 |
+
Рейтинг: 4.9'
|
80 |
+
- 'passage: Икра трески, 240 г; Нежная подсоленная икра тихоокеанской трески. С
|
81 |
+
узнаваемым, чуть сладковатым вкусом и зернистой текстурой. Идеально подходит для
|
82 |
+
сэндвичей, канапе и салатов.; Икра; Цена: 207.0; Рейтинг: 4.8'
|
83 |
+
model-index:
|
84 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-small
|
85 |
+
results:
|
86 |
+
- task:
|
87 |
+
type: semantic-similarity
|
88 |
+
name: Semantic Similarity
|
89 |
+
dataset:
|
90 |
+
name: dev
|
91 |
+
type: dev
|
92 |
+
metrics:
|
93 |
+
- type: pearson_cosine
|
94 |
+
value: 0.8058103374607081
|
95 |
+
name: Pearson Cosine
|
96 |
+
- type: spearman_cosine
|
97 |
+
value: 0.8022089220262975
|
98 |
+
name: Spearman Cosine
|
99 |
+
- type: pearson_manhattan
|
100 |
+
value: 0.7663931903358694
|
101 |
+
name: Pearson Manhattan
|
102 |
+
- type: spearman_manhattan
|
103 |
+
value: 0.8007955322402943
|
104 |
+
name: Spearman Manhattan
|
105 |
+
- type: pearson_euclidean
|
106 |
+
value: 0.7686449116883721
|
107 |
+
name: Pearson Euclidean
|
108 |
+
- type: spearman_euclidean
|
109 |
+
value: 0.8022089220262975
|
110 |
+
name: Spearman Euclidean
|
111 |
+
- type: pearson_dot
|
112 |
+
value: 0.8058103383272679
|
113 |
+
name: Pearson Dot
|
114 |
+
- type: spearman_dot
|
115 |
+
value: 0.8022089220262975
|
116 |
+
name: Spearman Dot
|
117 |
+
- type: pearson_max
|
118 |
+
value: 0.8058103383272679
|
119 |
+
name: Pearson Max
|
120 |
+
- type: spearman_max
|
121 |
+
value: 0.8022089220262975
|
122 |
+
name: Spearman Max
|
123 |
+
---
|
124 |
+
|
125 |
+
# SentenceTransformer based on intfloat/multilingual-e5-small
|
126 |
+
|
127 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
128 |
+
|
129 |
+
## Model Details
|
130 |
+
|
131 |
+
### Model Description
|
132 |
+
- **Model Type:** Sentence Transformer
|
133 |
+
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
|
134 |
+
- **Maximum Sequence Length:** 256 tokens
|
135 |
+
- **Output Dimensionality:** 384 tokens
|
136 |
+
- **Similarity Function:** Cosine Similarity
|
137 |
+
<!-- - **Training Dataset:** Unknown -->
|
138 |
+
<!-- - **Language:** Unknown -->
|
139 |
+
<!-- - **License:** Unknown -->
|
140 |
+
|
141 |
+
### Model Sources
|
142 |
+
|
143 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
144 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
145 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
146 |
+
|
147 |
+
### Full Model Architecture
|
148 |
+
|
149 |
+
```
|
150 |
+
SentenceTransformer(
|
151 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
152 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
153 |
+
(2): Normalize()
|
154 |
+
)
|
155 |
+
```
|
156 |
+
|
157 |
+
## Usage
|
158 |
+
|
159 |
+
### Direct Usage (Sentence Transformers)
|
160 |
+
|
161 |
+
First install the Sentence Transformers library:
|
162 |
+
|
163 |
+
```bash
|
164 |
+
pip install -U sentence-transformers
|
165 |
+
```
|
166 |
+
|
167 |
+
Then you can load this model and run inference.
|
168 |
+
```python
|
169 |
+
from sentence_transformers import SentenceTransformer
|
170 |
+
|
171 |
+
# Download from the 🤗 Hub
|
172 |
+
model = SentenceTransformer("Data-Lab/multilingual-e5-small-cross-encoder-v0.1")
|
173 |
+
# Run inference
|
174 |
+
sentences = [
|
175 |
+
'query: хачапури по аджарски',
|
176 |
+
'passage: Напиток на чайном грибе с цветами липы и чабрецом, 350 мл; Тонизирующий напиток природного брожения. Приготовлен на чистой культуре чайного гриба с цветами липы, чабрецом и иван-чаем. Вкус: кислинка и терпкость трав.; Квас; Цена: 98.0; Рейтинг: 4.7',
|
177 |
+
'passage: Икра трески, 240 г; Нежная подсоленная икра тихоокеанской трески. С узнаваемым, чуть сладковатым вкусом и зернистой текстурой. Идеально подходит для сэндвичей, канапе и салатов.; Икра; Цена: 207.0; Рейтинг: 4.8',
|
178 |
+
]
|
179 |
+
embeddings = model.encode(sentences)
|
180 |
+
print(embeddings.shape)
|
181 |
+
# [3, 384]
|
182 |
+
|
183 |
+
# Get the similarity scores for the embeddings
|
184 |
+
similarities = model.similarity(embeddings, embeddings)
|
185 |
+
print(similarities.shape)
|
186 |
+
# [3, 3]
|
187 |
+
```
|
188 |
+
|
189 |
+
<!--
|
190 |
+
### Direct Usage (Transformers)
|
191 |
+
|
192 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
193 |
+
|
194 |
+
</details>
|
195 |
+
-->
|
196 |
+
|
197 |
+
<!--
|
198 |
+
### Downstream Usage (Sentence Transformers)
|
199 |
+
|
200 |
+
You can finetune this model on your own dataset.
|
201 |
+
|
202 |
+
<details><summary>Click to expand</summary>
|
203 |
+
|
204 |
+
</details>
|
205 |
+
-->
|
206 |
+
|
207 |
+
<!--
|
208 |
+
### Out-of-Scope Use
|
209 |
+
|
210 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
211 |
+
-->
|
212 |
+
|
213 |
+
## Evaluation
|
214 |
+
|
215 |
+
### Metrics
|
216 |
+
|
217 |
+
#### Semantic Similarity
|
218 |
+
* Dataset: `dev`
|
219 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
220 |
+
|
221 |
+
| Metric | Value |
|
222 |
+
|:-------------------|:-----------|
|
223 |
+
| pearson_cosine | 0.8058 |
|
224 |
+
| spearman_cosine | 0.8022 |
|
225 |
+
| pearson_manhattan | 0.7664 |
|
226 |
+
| spearman_manhattan | 0.8008 |
|
227 |
+
| pearson_euclidean | 0.7686 |
|
228 |
+
| spearman_euclidean | 0.8022 |
|
229 |
+
| pearson_dot | 0.8058 |
|
230 |
+
| spearman_dot | 0.8022 |
|
231 |
+
| pearson_max | 0.8058 |
|
232 |
+
| **spearman_max** | **0.8022** |
|
233 |
+
|
234 |
+
<!--
|
235 |
+
## Bias, Risks and Limitations
|
236 |
+
|
237 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
238 |
+
-->
|
239 |
+
|
240 |
+
<!--
|
241 |
+
### Recommendations
|
242 |
+
|
243 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
244 |
+
-->
|
245 |
+
|
246 |
+
## Training Details
|
247 |
+
|
248 |
+
### Training Dataset
|
249 |
+
|
250 |
+
#### Unnamed Dataset
|
251 |
+
|
252 |
+
|
253 |
+
* Size: 6,577 training samples
|
254 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
255 |
+
* Approximate statistics based on the first 1000 samples:
|
256 |
+
| | sentence_0 | sentence_1 | label |
|
257 |
+
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
258 |
+
| type | string | string | float |
|
259 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 8.99 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 34 tokens</li><li>mean: 67.08 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
|
260 |
+
* Samples:
|
261 |
+
| sentence_0 | sentence_1 | label |
|
262 |
+
|:------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
263 |
+
| <code>query: ополаскиватель для рта</code> | <code>passage: Блин сырный по-голландски; Голландский сырный блинчик с пикантным чесноком и домашним майонезом; Блины; Цена: 218.0; Рейтинг: 4.8</code> | <code>0.0</code> |
|
264 |
+
| <code>query: таблетки для посудомоечной машины</code> | <code>passage: Десерт многослойный с фруктовым соком; Сочное желе из натуральных соков с фруктозно-глюкозным сиропом. Кисло-сладкий десерт.; Пирожные, муссы, суфле; Цена: 75.0; Рейтинг: 4.8</code> | <code>0.0</code> |
|
265 |
+
| <code>query: пельмени с индейкой мини</code> | <code>passage: Кумин молотый Золото Индии; Сильный сладковато-горький вкус. Идеально с рыбой, молочными продуктами и овощами.; Специи и приправы; Цена: 137.0; Рейтинг: 4.9</code> | <code>0.0</code> |
|
266 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
267 |
+
```json
|
268 |
+
{
|
269 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
270 |
+
}
|
271 |
+
```
|
272 |
+
|
273 |
+
### Training Hyperparameters
|
274 |
+
#### Non-Default Hyperparameters
|
275 |
+
|
276 |
+
- `eval_strategy`: steps
|
277 |
+
- `per_device_train_batch_size`: 32
|
278 |
+
- `per_device_eval_batch_size`: 32
|
279 |
+
- `fp16`: True
|
280 |
+
- `multi_dataset_batch_sampler`: round_robin
|
281 |
+
|
282 |
+
#### All Hyperparameters
|
283 |
+
<details><summary>Click to expand</summary>
|
284 |
+
|
285 |
+
- `overwrite_output_dir`: False
|
286 |
+
- `do_predict`: False
|
287 |
+
- `eval_strategy`: steps
|
288 |
+
- `prediction_loss_only`: True
|
289 |
+
- `per_device_train_batch_size`: 32
|
290 |
+
- `per_device_eval_batch_size`: 32
|
291 |
+
- `per_gpu_train_batch_size`: None
|
292 |
+
- `per_gpu_eval_batch_size`: None
|
293 |
+
- `gradient_accumulation_steps`: 1
|
294 |
+
- `eval_accumulation_steps`: None
|
295 |
+
- `torch_empty_cache_steps`: None
|
296 |
+
- `learning_rate`: 5e-05
|
297 |
+
- `weight_decay`: 0.0
|
298 |
+
- `adam_beta1`: 0.9
|
299 |
+
- `adam_beta2`: 0.999
|
300 |
+
- `adam_epsilon`: 1e-08
|
301 |
+
- `max_grad_norm`: 1
|
302 |
+
- `num_train_epochs`: 3
|
303 |
+
- `max_steps`: -1
|
304 |
+
- `lr_scheduler_type`: linear
|
305 |
+
- `lr_scheduler_kwargs`: {}
|
306 |
+
- `warmup_ratio`: 0.0
|
307 |
+
- `warmup_steps`: 0
|
308 |
+
- `log_level`: passive
|
309 |
+
- `log_level_replica`: warning
|
310 |
+
- `log_on_each_node`: True
|
311 |
+
- `logging_nan_inf_filter`: True
|
312 |
+
- `save_safetensors`: True
|
313 |
+
- `save_on_each_node`: False
|
314 |
+
- `save_only_model`: False
|
315 |
+
- `restore_callback_states_from_checkpoint`: False
|
316 |
+
- `no_cuda`: False
|
317 |
+
- `use_cpu`: False
|
318 |
+
- `use_mps_device`: False
|
319 |
+
- `seed`: 42
|
320 |
+
- `data_seed`: None
|
321 |
+
- `jit_mode_eval`: False
|
322 |
+
- `use_ipex`: False
|
323 |
+
- `bf16`: False
|
324 |
+
- `fp16`: True
|
325 |
+
- `fp16_opt_level`: O1
|
326 |
+
- `half_precision_backend`: auto
|
327 |
+
- `bf16_full_eval`: False
|
328 |
+
- `fp16_full_eval`: False
|
329 |
+
- `tf32`: None
|
330 |
+
- `local_rank`: 0
|
331 |
+
- `ddp_backend`: None
|
332 |
+
- `tpu_num_cores`: None
|
333 |
+
- `tpu_metrics_debug`: False
|
334 |
+
- `debug`: []
|
335 |
+
- `dataloader_drop_last`: False
|
336 |
+
- `dataloader_num_workers`: 0
|
337 |
+
- `dataloader_prefetch_factor`: None
|
338 |
+
- `past_index`: -1
|
339 |
+
- `disable_tqdm`: False
|
340 |
+
- `remove_unused_columns`: True
|
341 |
+
- `label_names`: None
|
342 |
+
- `load_best_model_at_end`: False
|
343 |
+
- `ignore_data_skip`: False
|
344 |
+
- `fsdp`: []
|
345 |
+
- `fsdp_min_num_params`: 0
|
346 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
347 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
348 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
349 |
+
- `deepspeed`: None
|
350 |
+
- `label_smoothing_factor`: 0.0
|
351 |
+
- `optim`: adamw_torch
|
352 |
+
- `optim_args`: None
|
353 |
+
- `adafactor`: False
|
354 |
+
- `group_by_length`: False
|
355 |
+
- `length_column_name`: length
|
356 |
+
- `ddp_find_unused_parameters`: None
|
357 |
+
- `ddp_bucket_cap_mb`: None
|
358 |
+
- `ddp_broadcast_buffers`: False
|
359 |
+
- `dataloader_pin_memory`: True
|
360 |
+
- `dataloader_persistent_workers`: False
|
361 |
+
- `skip_memory_metrics`: True
|
362 |
+
- `use_legacy_prediction_loop`: False
|
363 |
+
- `push_to_hub`: False
|
364 |
+
- `resume_from_checkpoint`: None
|
365 |
+
- `hub_model_id`: None
|
366 |
+
- `hub_strategy`: every_save
|
367 |
+
- `hub_private_repo`: False
|
368 |
+
- `hub_always_push`: False
|
369 |
+
- `gradient_checkpointing`: False
|
370 |
+
- `gradient_checkpointing_kwargs`: None
|
371 |
+
- `include_inputs_for_metrics`: False
|
372 |
+
- `eval_do_concat_batches`: True
|
373 |
+
- `fp16_backend`: auto
|
374 |
+
- `push_to_hub_model_id`: None
|
375 |
+
- `push_to_hub_organization`: None
|
376 |
+
- `mp_parameters`:
|
377 |
+
- `auto_find_batch_size`: False
|
378 |
+
- `full_determinism`: False
|
379 |
+
- `torchdynamo`: None
|
380 |
+
- `ray_scope`: last
|
381 |
+
- `ddp_timeout`: 1800
|
382 |
+
- `torch_compile`: False
|
383 |
+
- `torch_compile_backend`: None
|
384 |
+
- `torch_compile_mode`: None
|
385 |
+
- `dispatch_batches`: None
|
386 |
+
- `split_batches`: None
|
387 |
+
- `include_tokens_per_second`: False
|
388 |
+
- `include_num_input_tokens_seen`: False
|
389 |
+
- `neftune_noise_alpha`: None
|
390 |
+
- `optim_target_modules`: None
|
391 |
+
- `batch_eval_metrics`: False
|
392 |
+
- `eval_on_start`: False
|
393 |
+
- `eval_use_gather_object`: False
|
394 |
+
- `batch_sampler`: batch_sampler
|
395 |
+
- `multi_dataset_batch_sampler`: round_robin
|
396 |
+
|
397 |
+
</details>
|
398 |
+
|
399 |
+
### Training Logs
|
400 |
+
| Epoch | Step | dev_spearman_max |
|
401 |
+
|:-----:|:----:|:----------------:|
|
402 |
+
| 1.0 | 103 | 0.8078 |
|
403 |
+
| 2.0 | 206 | 0.8052 |
|
404 |
+
| 3.0 | 309 | 0.8022 |
|
405 |
+
|
406 |
+
|
407 |
+
### Framework Versions
|
408 |
+
- Python: 3.10.12
|
409 |
+
- Sentence Transformers: 3.2.0
|
410 |
+
- Transformers: 4.44.0
|
411 |
+
- PyTorch: 2.3.1+cu121
|
412 |
+
- Accelerate: 0.31.0
|
413 |
+
- Datasets: 2.20.0
|
414 |
+
- Tokenizers: 0.19.1
|
415 |
+
|
416 |
+
## Citation
|
417 |
+
|
418 |
+
### BibTeX
|
419 |
+
|
420 |
+
#### Sentence Transformers
|
421 |
+
```bibtex
|
422 |
+
@inproceedings{reimers-2019-sentence-bert,
|
423 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
424 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
425 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
426 |
+
month = "11",
|
427 |
+
year = "2019",
|
428 |
+
publisher = "Association for Computational Linguistics",
|
429 |
+
url = "https://arxiv.org/abs/1908.10084",
|
430 |
+
}
|
431 |
+
```
|
432 |
+
|
433 |
+
<!--
|
434 |
+
## Glossary
|
435 |
+
|
436 |
+
*Clearly define terms in order to be accessible across audiences.*
|
437 |
+
-->
|
438 |
+
|
439 |
+
<!--
|
440 |
+
## Model Card Authors
|
441 |
+
|
442 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
443 |
+
-->
|
444 |
+
|
445 |
+
<!--
|
446 |
+
## Model Card Contact
|
447 |
+
|
448 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
449 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-small",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 250037
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.0",
|
4 |
+
"transformers": "4.44.0",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cb42ce77ac10566c9109bab8c526cd25de3b20b5f27f0ecad721c43459cef66
|
3 |
+
size 470637416
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b95ee17661f8dfbbceaba374f6d277a6b5d8e1898c070a16331622024f58c67
|
3 |
+
size 17083053
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|