axolotl-ex / README.md
Deadwalker0's picture
Upload folder using huggingface_hub
76503fe verified
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openlm-research/open_llama_3b_v2
model-index:
- name: lora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: openlm-research/open_llama_3b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
push_dataset_to_hub:
datasets:
- path: teknium/GPT4-LLM-Cleaned
type: alpaca
dataset_prepared_path:
val_set_size: 0.02
adapter: lora
lora_model_dir:
sequence_len: 1024
sample_packing: true
lora_r: 8
lora_alpha: 16
lora_dropout: 0.0
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./lora-out
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
s2_attention:
gptq_model_v1:
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# lora-out
This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0041
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3745 | 0.0 | 1 | 1.6297 |
| 1.1387 | 0.25 | 168 | 1.0849 |
| 1.0619 | 0.5 | 336 | 1.0484 |
| 0.9686 | 0.75 | 504 | 1.0277 |
| 1.0816 | 1.0 | 672 | 1.0170 |
| 1.0513 | 1.23 | 840 | 1.0088 |
| 1.0814 | 1.48 | 1008 | 1.0041 |
| 1.0275 | 1.73 | 1176 | 0.9929 |
| 0.8872 | 1.98 | 1344 | 0.9883 |
| 0.9351 | 2.21 | 1512 | 0.9985 |
| 0.9077 | 2.46 | 1680 | 0.9968 |
| 0.9494 | 2.71 | 1848 | 0.9907 |
| 0.9596 | 2.96 | 2016 | 0.9916 |
| 0.8771 | 3.19 | 2184 | 1.0012 |
| 0.8912 | 3.44 | 2352 | 1.0041 |
| 0.7828 | 3.69 | 2520 | 1.0041 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0