SentenceTransformer based on sentence-transformers/distilbert-base-nli-mean-tokens
This is a sentence-transformers model finetuned from sentence-transformers/distilbert-base-nli-mean-tokens. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/distilbert-base-nli-mean-tokens
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DivyaMereddy007/RecipeBert_v5originalCopy_of_TrainSetenceTransforme-Finetuning_v5_DistilledBert")
# Run inference
sentences = [
'Watermelon Rind Pickles ["7 lb. watermelon rind", "7 c. sugar", "2 c. apple vinegar", "1/2 tsp. oil of cloves", "1/2 tsp. oil of cinnamon"] ["Trim off green and pink parts of watermelon rind; cut to 1-inch cubes.", "Parboil until tender, but not soft.", "Drain. Combine sugar, vinegar, oil of cloves and oil of cinnamon; bring to boiling and pour over rind.", "Let stand overnight.", "In the morning, drain off syrup.", "Heat and put over rind.", "The third morning, heat rind and syrup; seal in hot, sterilized jars.", "Makes 8 pints.", "(Oil of cinnamon and clove keeps rind clear and transparent.)"]',
'Summer Chicken ["1 pkg. chicken cutlets", "1/2 c. oil", "1/3 c. red vinegar", "2 Tbsp. oregano", "2 Tbsp. garlic salt"] ["Double recipe for more chicken."]',
'Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick Salad Supreme (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti per package.", "Drain.", "Melt a little butter through it.", "Marinate overnight in Salad Supreme and Zesty Italian dressing.", "Just before serving, add cucumbers, tomatoes, green peppers, mushrooms, olives or whatever your taste may want."]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,746 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 63 tokens
- mean: 118.85 tokens
- max: 128 tokens
- min: 63 tokens
- mean: 117.66 tokens
- max: 128 tokens
- min: 0.0
- mean: 0.19
- max: 1.0
- Samples:
sentence_0 sentence_1 label Cheeseburger Potato Soup ["6 baking potatoes", "1 lb. of extra lean ground beef", "2/3 c. butter or margarine", "6 c. milk", "3/4 tsp. salt", "1/2 tsp. pepper", "1 1/2 c (6 oz.) shredded Cheddar cheese, divided", "12 sliced bacon, cooked, crumbled and divided", "4 green onion, chopped and divided", "1 (8 oz.) carton sour cream (optional)"] ["Wash potatoes; prick several times with a fork.", "Microwave them with a wet paper towel covering the potatoes on high for 6-8 minutes.", "The potatoes should be soft, ready to eat.", "Let them cool enough to handle.", "Cut in half lengthwise; scoop out pulp and reserve.", "Discard shells.", "Brown ground beef until done.", "Drain any grease from the meat.", "Set aside when done.", "Meat will be added later.", "Melt butter in a large kettle over low heat; add flour, stirring until smooth.", "Cook 1 minute, stirring constantly. Gradually add milk; cook over medium heat, stirring constantly, until thickened and bubbly.", "Stir in potato, ground beef, salt, pepper, 1 cup of cheese, 2 tablespoons of green onion and 1/2 cup of bacon.", "Cook until heated (do not boil).", "Stir in sour cream if desired; cook until heated (do not boil).", "Sprinkle with remaining cheese, bacon and green onions."]
Quick Barbecue Wings ["chicken wings (as many as you need for dinner)", "flour", "barbecue sauce (your choice)"] ["Clean wings.", "Flour and fry until done.", "Place fried chicken wings in microwave bowl.", "Stir in barbecue sauce.", "Microwave on High (stir once) for 4 minutes."]
0.5
Broccoli Dip For Crackers ["16 oz. sour cream", "1 pkg. dry vegetable soup mix", "10 oz. pkg. frozen chopped broccoli, thawed and drained", "4 to 6 oz. Cheddar cheese, grated"] ["Mix together sour cream, soup mix, broccoli and half of cheese.", "Sprinkle remaining cheese on top.", "Bake at 350\u00b0 for 30 minutes, uncovered.", "Serve hot with vegetable crackers."]
Spaghetti Sauce To Can ["1/2 bushel tomatoes", "1 c. oil", "1/4 c. minced garlic", "6 cans tomato paste", "3 peppers (2 sweet and 1 hot)", "1 1/2 c. sugar", "1/2 c. salt", "1 Tbsp. sweet basil", "2 Tbsp. oregano", "1 tsp. Italian seasoning"] ["Cook ground or chopped peppers and onions in oil for 1/2 hour. Cook tomatoes and garlic as for juice.", "Put through the mill.", "(I use a food processor and do my tomatoes uncooked.", "I then add the garlic right to the juice.)", "Add peppers and onions to juice and remainder of ingredients.", "Cook approximately 1 hour.", "Put in jars and seal.", "Yields 7 quarts."]
0.1
Cheeseburger Potato Soup ["6 baking potatoes", "1 lb. of extra lean ground beef", "2/3 c. butter or margarine", "6 c. milk", "3/4 tsp. salt", "1/2 tsp. pepper", "1 1/2 c (6 oz.) shredded Cheddar cheese, divided", "12 sliced bacon, cooked, crumbled and divided", "4 green onion, chopped and divided", "1 (8 oz.) carton sour cream (optional)"] ["Wash potatoes; prick several times with a fork.", "Microwave them with a wet paper towel covering the potatoes on high for 6-8 minutes.", "The potatoes should be soft, ready to eat.", "Let them cool enough to handle.", "Cut in half lengthwise; scoop out pulp and reserve.", "Discard shells.", "Brown ground beef until done.", "Drain any grease from the meat.", "Set aside when done.", "Meat will be added later.", "Melt butter in a large kettle over low heat; add flour, stirring until smooth.", "Cook 1 minute, stirring constantly. Gradually add milk; cook over medium heat, stirring constantly, until thickened and bubbly.", "Stir in potato, ground beef, salt, pepper, 1 cup of cheese, 2 tablespoons of green onion and 1/2 cup of bacon.", "Cook until heated (do not boil).", "Stir in sour cream if desired; cook until heated (do not boil).", "Sprinkle with remaining cheese, bacon and green onions."]
Tuna Macaroni Casserole ["1 box macaroni and cheese", "1 can tuna, drained", "1 small jar pimentos", "1 medium onion, chopped"] ["Prepare macaroni and cheese as directed.", "Add drained tuna, pimento and onion.", "Mix.", "Serve hot or cold."]
0.6
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
4.5455 | 500 | 0.0279 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.