anton-l's picture
anton-l HF staff
Upload README.md
ba766d9
---
language:
- as
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- as
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-as-g1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: as
metrics:
- name: Test WER
type: wer
value: 0.6540934419202743
- name: Test CER
type: cer
value: 0.21454042646095625
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: as
metrics:
- name: Test WER
type: wer
value: NA
- name: Test CER
type: cer
value: NA
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-as-g1
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AS dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3327
- Wer: 0.5744
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-as-g1 --dataset mozilla-foundation/common_voice_8_0 --config as --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Assamese language isn't available in speech-recognition-community-v2/dev_data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 14.1958 | 5.26 | 100 | 7.1919 | 1.0 |
| 5.0035 | 10.51 | 200 | 3.9362 | 1.0 |
| 3.6193 | 15.77 | 300 | 3.4451 | 1.0 |
| 3.4852 | 21.05 | 400 | 3.3536 | 1.0 |
| 2.8489 | 26.31 | 500 | 1.6451 | 0.9100 |
| 0.9568 | 31.56 | 600 | 1.0514 | 0.7561 |
| 0.4865 | 36.82 | 700 | 1.0434 | 0.7184 |
| 0.322 | 42.1 | 800 | 1.0825 | 0.7210 |
| 0.2383 | 47.36 | 900 | 1.1304 | 0.6897 |
| 0.2136 | 52.62 | 1000 | 1.1150 | 0.6854 |
| 0.179 | 57.87 | 1100 | 1.2453 | 0.6875 |
| 0.1539 | 63.15 | 1200 | 1.2211 | 0.6704 |
| 0.1303 | 68.41 | 1300 | 1.2859 | 0.6747 |
| 0.1183 | 73.67 | 1400 | 1.2775 | 0.6721 |
| 0.0994 | 78.92 | 1500 | 1.2321 | 0.6404 |
| 0.0991 | 84.21 | 1600 | 1.2766 | 0.6524 |
| 0.0887 | 89.46 | 1700 | 1.3026 | 0.6344 |
| 0.0754 | 94.72 | 1800 | 1.3199 | 0.6704 |
| 0.0693 | 99.97 | 1900 | 1.3044 | 0.6361 |
| 0.0568 | 105.26 | 2000 | 1.3541 | 0.6254 |
| 0.0536 | 110.51 | 2100 | 1.3320 | 0.6249 |
| 0.0529 | 115.77 | 2200 | 1.3370 | 0.6271 |
| 0.048 | 121.05 | 2300 | 1.2757 | 0.6031 |
| 0.0419 | 126.31 | 2400 | 1.2661 | 0.6172 |
| 0.0349 | 131.56 | 2500 | 1.2897 | 0.6048 |
| 0.0309 | 136.82 | 2600 | 1.2688 | 0.5962 |
| 0.0278 | 142.1 | 2700 | 1.2885 | 0.5954 |
| 0.0254 | 147.36 | 2800 | 1.2988 | 0.5915 |
| 0.0223 | 152.62 | 2900 | 1.3153 | 0.5941 |
| 0.0216 | 157.87 | 3000 | 1.2936 | 0.5937 |
| 0.0186 | 163.15 | 3100 | 1.2906 | 0.5877 |
| 0.0156 | 168.41 | 3200 | 1.3476 | 0.5962 |
| 0.0158 | 173.67 | 3300 | 1.3363 | 0.5847 |
| 0.0142 | 178.92 | 3400 | 1.3367 | 0.5847 |
| 0.0153 | 184.21 | 3500 | 1.3105 | 0.5757 |
| 0.0119 | 189.46 | 3600 | 1.3255 | 0.5705 |
| 0.0115 | 194.72 | 3700 | 1.3340 | 0.5787 |
| 0.0103 | 199.97 | 3800 | 1.3327 | 0.5744 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0