|
---
|
|
license: apache-2.0
|
|
datasets:
|
|
- coco
|
|
pipeline_tag: image-segmentation
|
|
tags:
|
|
- computer-vision
|
|
- image-segmentation
|
|
- ENOT-AutoDL
|
|
---
|
|
|
|
# ENOT-AutoDL pruning benchmark on MS-COCO
|
|
|
|
This repository contains models accelerated with [ENOT-AutoDL](https://pypi.org/project/enot-autodl/) framework.
|
|
Models from [Torchvision](https://pytorch.org/vision/stable/models.html) are used as a baseline.
|
|
Evaluation code is also based on Torchvision references.
|
|
|
|
## DeeplabV3_MobileNetV3_Large
|
|
|
|
| Model | Latency (MMACs) | mean IoU (%) |
|
|
|---------------------------------------------|:---------------:|:------------:|
|
|
| **DeeplabV3_MobileNetV3_Large Torchvision** | 8872.87 | 47.0 |
|
|
| **DeeplabV3_MobileNetV3_Large ENOT (x2)** | 4436.41 (x2.0) | 47.6 (+0.6) |
|
|
| **DeeplabV3_MobileNetV3_Large ENOT (x4)** | 2217.53 (x4.0) | 46.4 (-0.6) |
|
|
|
|
# Validation
|
|
|
|
To validate results, follow this steps:
|
|
|
|
1. Install all required packages:
|
|
```bash
|
|
pip install -r requrements.txt
|
|
```
|
|
1. Calculate model latency:
|
|
```bash
|
|
python measure_mac.py --model-path path/to/model.pth
|
|
```
|
|
1. Measure mean IoU of PyTorch (.pth) model:
|
|
```bash
|
|
python test.py --data-path path/to/coco --model-path path/to/model.pth
|
|
```
|
|
|
|
If you want to book a demo, please contact us: [email protected] . |