File size: 6,795 Bytes
7656836
 
 
7d10211
 
7656836
 
 
 
 
 
 
 
 
 
 
7d10211
7656836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: other
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: mobilevit-small-10k-steps
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mobilevit-small-10k-steps

This model is a fine-tuned version of [apple/deeplabv3-mobilevit-small](https://huggingface.co/apple/deeplabv3-mobilevit-small) on the Efferbach/lane_master2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0821
- Mean Iou: 0.0
- Mean Accuracy: 0.0
- Overall Accuracy: 0.0
- Accuracy Background: nan
- Accuracy Left: 0.0
- Accuracy Right: 0.0
- Iou Background: 0.0
- Iou Left: 0.0
- Iou Right: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:|
| 0.5041        | 1.0   | 385   | 0.3382          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.1553        | 2.0   | 770   | 0.1387          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.1019        | 3.0   | 1155  | 0.1037          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0882        | 4.0   | 1540  | 0.0883          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0828        | 5.0   | 1925  | 0.0823          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0807        | 6.0   | 2310  | 0.0820          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0795        | 7.0   | 2695  | 0.0804          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0786        | 8.0   | 3080  | 0.0784          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0777        | 9.0   | 3465  | 0.0786          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0771        | 10.0  | 3850  | 0.0774          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0773        | 11.0  | 4235  | 0.0775          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0765        | 12.0  | 4620  | 0.0782          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0757        | 13.0  | 5005  | 0.0775          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0756        | 14.0  | 5390  | 0.0774          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0754        | 15.0  | 5775  | 0.0775          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0746        | 16.0  | 6160  | 0.0775          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.074         | 17.0  | 6545  | 0.0779          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0736        | 18.0  | 6930  | 0.0792          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0737        | 19.0  | 7315  | 0.0801          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.073         | 20.0  | 7700  | 0.0804          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0729        | 21.0  | 8085  | 0.0805          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0734        | 22.0  | 8470  | 0.0804          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0726        | 23.0  | 8855  | 0.0811          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0726        | 24.0  | 9240  | 0.0816          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0721        | 25.0  | 9625  | 0.0822          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |
| 0.0727        | 25.97 | 10000 | 0.0821          | 0.0      | 0.0           | 0.0              | nan                 | 0.0           | 0.0            | 0.0            | 0.0      | 0.0       |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3