segformer-finetuned-lane-10k-steps
This model is a fine-tuned version of nvidia/segformer-b0-finetuned-cityscapes-512-1024 on the Efferbach/lane_master dataset. It achieves the following results on the evaluation set:
- Loss: 0.0365
- Mean Iou: 0.4899
- Mean Accuracy: 0.7371
- Overall Accuracy: 0.7371
- Accuracy Background: nan
- Accuracy Left: 0.7394
- Accuracy Right: 0.7348
- Iou Background: 0.0
- Iou Left: 0.7371
- Iou Right: 0.7325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0792 | 1.0 | 308 | 0.0714 | 0.0148 | 0.0229 | 0.0225 | nan | 0.0373 | 0.0085 | 0.0 | 0.0362 | 0.0083 |
0.0437 | 2.0 | 616 | 0.0502 | 0.1687 | 0.2775 | 0.2784 | nan | 0.2492 | 0.3058 | 0.0 | 0.2343 | 0.2718 |
0.0326 | 3.0 | 924 | 0.0445 | 0.2614 | 0.4441 | 0.4479 | nan | 0.3134 | 0.5748 | 0.0 | 0.3100 | 0.4742 |
0.0224 | 4.0 | 1232 | 0.0370 | 0.4048 | 0.6098 | 0.6100 | nan | 0.6043 | 0.6153 | 0.0 | 0.6031 | 0.6113 |
0.0184 | 5.0 | 1540 | 0.0346 | 0.3820 | 0.5858 | 0.5870 | nan | 0.5421 | 0.6295 | 0.0 | 0.5400 | 0.6060 |
0.0159 | 6.0 | 1848 | 0.0319 | 0.4367 | 0.6567 | 0.6573 | nan | 0.6343 | 0.6791 | 0.0 | 0.6341 | 0.6760 |
0.0139 | 7.0 | 2156 | 0.0317 | 0.4555 | 0.6855 | 0.6860 | nan | 0.6691 | 0.7019 | 0.0 | 0.6680 | 0.6986 |
0.0129 | 8.0 | 2464 | 0.0321 | 0.4348 | 0.6533 | 0.6535 | nan | 0.6479 | 0.6588 | 0.0 | 0.6474 | 0.6571 |
0.0122 | 9.0 | 2772 | 0.0275 | 0.4541 | 0.6827 | 0.6830 | nan | 0.6710 | 0.6943 | 0.0 | 0.6697 | 0.6927 |
0.0111 | 10.0 | 3080 | 0.0305 | 0.4609 | 0.6928 | 0.6927 | nan | 0.6969 | 0.6887 | 0.0 | 0.6963 | 0.6865 |
0.011 | 11.0 | 3388 | 0.0286 | 0.4646 | 0.6988 | 0.6991 | nan | 0.6890 | 0.7087 | 0.0 | 0.6883 | 0.7055 |
0.0103 | 12.0 | 3696 | 0.0298 | 0.4693 | 0.7058 | 0.7062 | nan | 0.6939 | 0.7177 | 0.0 | 0.6932 | 0.7148 |
0.0097 | 13.0 | 4004 | 0.0293 | 0.4717 | 0.7090 | 0.7087 | nan | 0.7184 | 0.6996 | 0.0 | 0.7176 | 0.6975 |
0.0093 | 14.0 | 4312 | 0.0330 | 0.4537 | 0.6835 | 0.6836 | nan | 0.6775 | 0.6894 | 0.0 | 0.6768 | 0.6843 |
0.009 | 15.0 | 4620 | 0.0331 | 0.4804 | 0.7226 | 0.7226 | nan | 0.7194 | 0.7257 | 0.0 | 0.7178 | 0.7234 |
0.0088 | 16.0 | 4928 | 0.0315 | 0.4890 | 0.7355 | 0.7357 | nan | 0.7275 | 0.7435 | 0.0 | 0.7259 | 0.7411 |
0.0086 | 17.0 | 5236 | 0.0338 | 0.4813 | 0.7234 | 0.7234 | nan | 0.7224 | 0.7243 | 0.0 | 0.7216 | 0.7223 |
0.0085 | 18.0 | 5544 | 0.0348 | 0.4743 | 0.7129 | 0.7126 | nan | 0.7225 | 0.7033 | 0.0 | 0.7217 | 0.7012 |
0.0083 | 19.0 | 5852 | 0.0357 | 0.4812 | 0.7245 | 0.7244 | nan | 0.7281 | 0.7210 | 0.0 | 0.7254 | 0.7183 |
0.0081 | 20.0 | 6160 | 0.0334 | 0.4829 | 0.7271 | 0.7269 | nan | 0.7337 | 0.7205 | 0.0 | 0.7305 | 0.7182 |
0.0079 | 21.0 | 6468 | 0.0359 | 0.4773 | 0.7177 | 0.7177 | nan | 0.7184 | 0.7170 | 0.0 | 0.7174 | 0.7146 |
0.0077 | 22.0 | 6776 | 0.0351 | 0.4874 | 0.7332 | 0.7329 | nan | 0.7440 | 0.7223 | 0.0 | 0.7432 | 0.7190 |
0.0075 | 23.0 | 7084 | 0.0344 | 0.4855 | 0.7296 | 0.7292 | nan | 0.7437 | 0.7156 | 0.0 | 0.7425 | 0.7141 |
0.0077 | 24.0 | 7392 | 0.0362 | 0.4799 | 0.7216 | 0.7216 | nan | 0.7236 | 0.7196 | 0.0 | 0.7223 | 0.7174 |
0.0071 | 25.0 | 7700 | 0.0391 | 0.4775 | 0.7179 | 0.7180 | nan | 0.7173 | 0.7186 | 0.0 | 0.7161 | 0.7163 |
0.0077 | 26.0 | 8008 | 0.0339 | 0.4895 | 0.7367 | 0.7366 | nan | 0.7405 | 0.7329 | 0.0 | 0.7388 | 0.7297 |
0.0069 | 27.0 | 8316 | 0.0344 | 0.4858 | 0.7305 | 0.7305 | nan | 0.7291 | 0.7318 | 0.0 | 0.7278 | 0.7297 |
0.0069 | 28.0 | 8624 | 0.0361 | 0.4844 | 0.7283 | 0.7282 | nan | 0.7324 | 0.7243 | 0.0 | 0.7309 | 0.7221 |
0.007 | 29.0 | 8932 | 0.0371 | 0.4837 | 0.7273 | 0.7270 | nan | 0.7360 | 0.7186 | 0.0 | 0.7345 | 0.7166 |
0.007 | 30.0 | 9240 | 0.0366 | 0.4854 | 0.7305 | 0.7303 | nan | 0.7379 | 0.7231 | 0.0 | 0.7353 | 0.7208 |
0.0067 | 31.0 | 9548 | 0.0367 | 0.4866 | 0.7322 | 0.7321 | nan | 0.7357 | 0.7286 | 0.0 | 0.7335 | 0.7263 |
0.0068 | 32.0 | 9856 | 0.0364 | 0.4883 | 0.7348 | 0.7347 | nan | 0.7377 | 0.7318 | 0.0 | 0.7355 | 0.7295 |
0.0067 | 32.47 | 10000 | 0.0365 | 0.4899 | 0.7371 | 0.7371 | nan | 0.7394 | 0.7348 | 0.0 | 0.7371 | 0.7325 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 695
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.