segformer-finetuned-lane-10k-steps

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-cityscapes-512-1024 on the Efferbach/lane_master dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0365
  • Mean Iou: 0.4899
  • Mean Accuracy: 0.7371
  • Overall Accuracy: 0.7371
  • Accuracy Background: nan
  • Accuracy Left: 0.7394
  • Accuracy Right: 0.7348
  • Iou Background: 0.0
  • Iou Left: 0.7371
  • Iou Right: 0.7325

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Left Accuracy Right Iou Background Iou Left Iou Right
0.0792 1.0 308 0.0714 0.0148 0.0229 0.0225 nan 0.0373 0.0085 0.0 0.0362 0.0083
0.0437 2.0 616 0.0502 0.1687 0.2775 0.2784 nan 0.2492 0.3058 0.0 0.2343 0.2718
0.0326 3.0 924 0.0445 0.2614 0.4441 0.4479 nan 0.3134 0.5748 0.0 0.3100 0.4742
0.0224 4.0 1232 0.0370 0.4048 0.6098 0.6100 nan 0.6043 0.6153 0.0 0.6031 0.6113
0.0184 5.0 1540 0.0346 0.3820 0.5858 0.5870 nan 0.5421 0.6295 0.0 0.5400 0.6060
0.0159 6.0 1848 0.0319 0.4367 0.6567 0.6573 nan 0.6343 0.6791 0.0 0.6341 0.6760
0.0139 7.0 2156 0.0317 0.4555 0.6855 0.6860 nan 0.6691 0.7019 0.0 0.6680 0.6986
0.0129 8.0 2464 0.0321 0.4348 0.6533 0.6535 nan 0.6479 0.6588 0.0 0.6474 0.6571
0.0122 9.0 2772 0.0275 0.4541 0.6827 0.6830 nan 0.6710 0.6943 0.0 0.6697 0.6927
0.0111 10.0 3080 0.0305 0.4609 0.6928 0.6927 nan 0.6969 0.6887 0.0 0.6963 0.6865
0.011 11.0 3388 0.0286 0.4646 0.6988 0.6991 nan 0.6890 0.7087 0.0 0.6883 0.7055
0.0103 12.0 3696 0.0298 0.4693 0.7058 0.7062 nan 0.6939 0.7177 0.0 0.6932 0.7148
0.0097 13.0 4004 0.0293 0.4717 0.7090 0.7087 nan 0.7184 0.6996 0.0 0.7176 0.6975
0.0093 14.0 4312 0.0330 0.4537 0.6835 0.6836 nan 0.6775 0.6894 0.0 0.6768 0.6843
0.009 15.0 4620 0.0331 0.4804 0.7226 0.7226 nan 0.7194 0.7257 0.0 0.7178 0.7234
0.0088 16.0 4928 0.0315 0.4890 0.7355 0.7357 nan 0.7275 0.7435 0.0 0.7259 0.7411
0.0086 17.0 5236 0.0338 0.4813 0.7234 0.7234 nan 0.7224 0.7243 0.0 0.7216 0.7223
0.0085 18.0 5544 0.0348 0.4743 0.7129 0.7126 nan 0.7225 0.7033 0.0 0.7217 0.7012
0.0083 19.0 5852 0.0357 0.4812 0.7245 0.7244 nan 0.7281 0.7210 0.0 0.7254 0.7183
0.0081 20.0 6160 0.0334 0.4829 0.7271 0.7269 nan 0.7337 0.7205 0.0 0.7305 0.7182
0.0079 21.0 6468 0.0359 0.4773 0.7177 0.7177 nan 0.7184 0.7170 0.0 0.7174 0.7146
0.0077 22.0 6776 0.0351 0.4874 0.7332 0.7329 nan 0.7440 0.7223 0.0 0.7432 0.7190
0.0075 23.0 7084 0.0344 0.4855 0.7296 0.7292 nan 0.7437 0.7156 0.0 0.7425 0.7141
0.0077 24.0 7392 0.0362 0.4799 0.7216 0.7216 nan 0.7236 0.7196 0.0 0.7223 0.7174
0.0071 25.0 7700 0.0391 0.4775 0.7179 0.7180 nan 0.7173 0.7186 0.0 0.7161 0.7163
0.0077 26.0 8008 0.0339 0.4895 0.7367 0.7366 nan 0.7405 0.7329 0.0 0.7388 0.7297
0.0069 27.0 8316 0.0344 0.4858 0.7305 0.7305 nan 0.7291 0.7318 0.0 0.7278 0.7297
0.0069 28.0 8624 0.0361 0.4844 0.7283 0.7282 nan 0.7324 0.7243 0.0 0.7309 0.7221
0.007 29.0 8932 0.0371 0.4837 0.7273 0.7270 nan 0.7360 0.7186 0.0 0.7345 0.7166
0.007 30.0 9240 0.0366 0.4854 0.7305 0.7303 nan 0.7379 0.7231 0.0 0.7353 0.7208
0.0067 31.0 9548 0.0367 0.4866 0.7322 0.7321 nan 0.7357 0.7286 0.0 0.7335 0.7263
0.0068 32.0 9856 0.0364 0.4883 0.7348 0.7347 nan 0.7377 0.7318 0.0 0.7355 0.7295
0.0067 32.47 10000 0.0365 0.4899 0.7371 0.7371 nan 0.7394 0.7348 0.0 0.7371 0.7325

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
695
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.