logo

Model card

We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096 × 4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU.

Source code is available at https://github.com/NVlabs/Sana.

Note

  • Weakness in Complex Scene Creation: Due to limitation of data, our model has limited capabilities in generating complex scenes, text, and human hands.
  • Enhancing Capabilities: The model’s performance can be improved by increasing the complexity and length of prompts. Below are some examples of prompts and samples.

4K samples

Images pic1 pic2 pic3 pic4
prompt A hot air balloon in the shape of a heart. Grand Canyon a melting apple
A middle-aged woman of Asian descent, her dark hair streaked with silver , appears fractured and splintered, intricately embedded within a sea of broken porcelain. The porcelain glistens with splatter paint patterns in a harmonious blend of glossy and matte blues, greens, oranges, and reds, capturing her dance in a surreal juxtaposition of movement and stillness. Her skin tone, a light hue like the porcelain, adds an almost mystical quality to her form.
Modern luxury contemporary luxury home interiors house , in the style of mimicking ruined materials, ray tracing, haunting houses, and stone, capture the essence of nature, gray and bronze, dynamic outdoor shots.

Model Description

  • Developed by: NVIDIA, Sana
  • Model type: Linear-Diffusion-Transformer-based text-to-image generative model
  • Model size: 1648M parameters
  • Model resolution: This model is developed to generate 4Kpx based images with multi-scale heigh and width.
  • License: CC BY-NC-SA 4.0 License
  • Model Description: This is a model that can be used to generate and modify images based on text prompts. It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders (Gemma2-2B-IT) and one 32x spatial-compressed latent feature encoder (DC-AE).
  • Special: This model is fine-tuned from the base model Efficient-Large-Model/Sana_1600M_1024px_BF16 and it supports Emoji, Chinese and English and all mixed prompts.
  • Resources for more information: Check out our GitHub Repository and the Sana report on arXiv.

Model Sources

For research purposes, we recommend our generative-models Github repository (https://github.com/NVlabs/Sana), which is more suitable for both training and inference and for which most advanced diffusion sampler like Flow-DPM-Solver is integrated. MIT Han-Lab provides free Sana inference.

Usage

Refer to original GitHub guidance to use the .pth model in Sana official code repo:

import torch
from app.sana_pipeline import SanaPipeline
from torchvision.utils import save_image

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
generator = torch.Generator(device=device).manual_seed(42)

sana = SanaPipeline("configs/sana_config/4096ms/Sana_1600M_img4096_bf16.yaml")
sana.from_pretrained("hf://Efficient-Large-Model/Sana_1600M_4Kpx_BF16/checkpoints/Sana_1600M_4Kpx_BF16.pth")
prompt = 'a cyberpunk cat with a neon sign that says "Sana"'

image = sana(
    prompt=prompt,
    height=4096,
    width=4096,
    guidance_scale=5.0,
    pag_guidance_scale=2.0,
    num_inference_steps=20,
    generator=generator,
)
save_image(image, 'output/sana_4K.png', nrow=1, normalize=True, value_range=(-1, 1))

Uses

Direct Use

The model is intended for research purposes only. Possible research areas and tasks include

  • Generation of artworks and use in design and other artistic processes.

  • Applications in educational or creative tools.

  • Research on generative models.

  • Safe deployment of models which have the potential to generate harmful content.

  • Probing and understanding the limitations and biases of generative models.

Excluded uses are described below.

Out-of-Scope Use

The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.

Limitations and Bias

Limitations

  • The model does not achieve perfect photorealism
  • The model cannot render complex legible text
  • fingers, .etc in general may not be generated properly.
  • The autoencoding part of the model is lossy.

Bias

While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.

Downloads last month
5
Inference Examples
Inference API (serverless) does not yet support sana models for this pipeline type.

Model tree for Efficient-Large-Model/Sana_1600M_4Kpx_BF16

Unable to build the model tree, the base model loops to the model itself. Learn more.

Collection including Efficient-Large-Model/Sana_1600M_4Kpx_BF16