clean-chimp-516 / README.md
ElMad's picture
stackoverflow_tag_classification/modernBERT_vs_Deberta/ModernBERT-base/clean-chimp-516
08a26aa verified
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: clean-chimp-516
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clean-chimp-516
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1555
- Hamming Loss: 0.0573
- Zero One Loss: 0.4100
- Jaccard Score: 0.3526
- Hamming Loss Optimised: 0.0556
- Hamming Loss Threshold: 0.5917
- Zero One Loss Optimised: 0.4075
- Zero One Loss Threshold: 0.5180
- Jaccard Score Optimised: 0.3191
- Jaccard Score Threshold: 0.2860
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.651418456743375e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.956179116410945,0.8750477528228764) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log | 1.0 | 100 | 0.1691 | 0.0649 | 0.5188 | 0.4740 | 0.064 | 0.5111 | 0.4938 | 0.2835 | 0.3735 | 0.2151 |
| No log | 2.0 | 200 | 0.1540 | 0.061 | 0.4313 | 0.3716 | 0.0574 | 0.5944 | 0.4263 | 0.4263 | 0.3226 | 0.2889 |
| No log | 3.0 | 300 | 0.1555 | 0.0573 | 0.4100 | 0.3526 | 0.0556 | 0.5917 | 0.4075 | 0.5180 | 0.3191 | 0.2860 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0