metadata
license: apache-2.0
pipeline_tag: text-generation
tags:
- ONNX
- DML
- DirectML
- ONNXRuntime
- mistral
- conversational
- custom_code
inference: false
Mistral-7B-Instruct-v0.3 ONNX
Model Summary
This model is an ONNX-optimized version of Mistral-7B-Instruct-v0.3, designed to provide accelerated inference on a variety of hardware using ONNX Runtime(CPU and DirectML). DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, providing GPU acceleration for a wide range of supported hardware and drivers, including AMD, Intel, NVIDIA, and Qualcomm GPUs.
ONNX Models
Here are some of the optimized configurations we have added:
- ONNX model for int4 DirectML: ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
- ONNX model for int4 CPU and Mobile: ONNX model for CPU and mobile using int4 quantization via RTN. There are two versions uploaded to balance latency vs. accuracy. Acc=1 is targeted at improved accuracy, while Acc=4 is for improved performance. For mobile devices, we recommend using the model with acc-level-4.
Usage
Installation and Setup
To use the Mistral-7B-Instruct-v0.3 ONNX model on Windows with DirectML, follow these steps:
- Create and activate a Conda environment:
conda create -n onnx python=3.10
conda activate onnx
- Install Git LFS:
winget install -e --id GitHub.GitLFS
- Install Hugging Face CLI:
pip install huggingface-hub[cli]
- Download the model:
huggingface-cli download EmbeddedLLM/mistral-7b-instruct-v0.3-onnx --include="onnx/directml/*" --local-dir .\mistral-7b-instruct-v0.3
- Install necessary Python packages:
pip install numpy
pip install onnxruntime-directml
pip install --pre onnxruntime-genai-directml
- Install Visual Studio 2015 runtime:
conda install conda-forge::vs2015_runtime
- Download the example script:
Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py"
- Run the example script:
python phi3-qa.py -m .\mistral-7b-instruct-v0.3
Hardware Requirements
Minimum Configuration:
- Windows: DirectX 12-capable GPU (AMD/Nvidia)
- CPU: x86_64 / ARM64
Tested Configurations:
- GPU: AMD Ryzen 8000 Series iGPU (DirectML)
- CPU: AMD Ryzen CPU
Model Description
- Developed by: Mistral AI
- Model type: ONNX
- Language(s) (NLP): Python, C, C++
- License: Apache License Version 2.0
- Model Description: This model is a conversion of the Mistral-7B-Instruct-v0.3 for ONNX Runtime inference, optimized for CPU and DirectML.