Emm9625's picture
Upload README.md with huggingface_hub
6637124 verified
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- llama-cpp
- gguf-my-repo
datasets:
- jinaai/negation-dataset
language: en
inference: false
license: apache-2.0
base_model: jinaai/jina-embeddings-v2-small-en
model-index:
- name: jina-embedding-s-en-v2
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 71.35820895522387
- type: ap
value: 33.99931933598115
- type: f1
value: 65.3853685535555
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 82.90140000000001
- type: ap
value: 78.01434597815617
- type: f1
value: 82.83357802722676
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.88999999999999
- type: f1
value: 39.209432767163456
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.257
- type: map_at_10
value: 37.946000000000005
- type: map_at_100
value: 39.17
- type: map_at_1000
value: 39.181
- type: map_at_3
value: 32.99
- type: map_at_5
value: 35.467999999999996
- type: mrr_at_1
value: 23.541999999999998
- type: mrr_at_10
value: 38.057
- type: mrr_at_100
value: 39.289
- type: mrr_at_1000
value: 39.299
- type: mrr_at_3
value: 33.096
- type: mrr_at_5
value: 35.628
- type: ndcg_at_1
value: 23.257
- type: ndcg_at_10
value: 46.729
- type: ndcg_at_100
value: 51.900999999999996
- type: ndcg_at_1000
value: 52.16
- type: ndcg_at_3
value: 36.323
- type: ndcg_at_5
value: 40.766999999999996
- type: precision_at_1
value: 23.257
- type: precision_at_10
value: 7.510999999999999
- type: precision_at_100
value: 0.976
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 15.339
- type: precision_at_5
value: 11.350999999999999
- type: recall_at_1
value: 23.257
- type: recall_at_10
value: 75.107
- type: recall_at_100
value: 97.58200000000001
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_3
value: 46.017
- type: recall_at_5
value: 56.757000000000005
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 44.02420878391967
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 35.16136856000258
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 59.61809790513646
- type: mrr
value: 73.07215406938397
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 82.0167350090749
- type: cos_sim_spearman
value: 80.51569002630401
- type: euclidean_pearson
value: 81.46820525099726
- type: euclidean_spearman
value: 80.51569002630401
- type: manhattan_pearson
value: 81.35596555056757
- type: manhattan_spearman
value: 80.12592210903303
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 78.25
- type: f1
value: 77.34950913540605
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 35.57238596005698
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 29.066444306196683
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.891000000000002
- type: map_at_10
value: 42.772
- type: map_at_100
value: 44.108999999999995
- type: map_at_1000
value: 44.236
- type: map_at_3
value: 39.289
- type: map_at_5
value: 41.113
- type: mrr_at_1
value: 39.342
- type: mrr_at_10
value: 48.852000000000004
- type: mrr_at_100
value: 49.534
- type: mrr_at_1000
value: 49.582
- type: mrr_at_3
value: 46.089999999999996
- type: mrr_at_5
value: 47.685
- type: ndcg_at_1
value: 39.342
- type: ndcg_at_10
value: 48.988
- type: ndcg_at_100
value: 53.854
- type: ndcg_at_1000
value: 55.955
- type: ndcg_at_3
value: 43.877
- type: ndcg_at_5
value: 46.027
- type: precision_at_1
value: 39.342
- type: precision_at_10
value: 9.285
- type: precision_at_100
value: 1.488
- type: precision_at_1000
value: 0.194
- type: precision_at_3
value: 20.696
- type: precision_at_5
value: 14.878
- type: recall_at_1
value: 31.891000000000002
- type: recall_at_10
value: 60.608
- type: recall_at_100
value: 81.025
- type: recall_at_1000
value: 94.883
- type: recall_at_3
value: 45.694
- type: recall_at_5
value: 51.684
- type: map_at_1
value: 28.778
- type: map_at_10
value: 37.632
- type: map_at_100
value: 38.800000000000004
- type: map_at_1000
value: 38.934999999999995
- type: map_at_3
value: 35.293
- type: map_at_5
value: 36.547000000000004
- type: mrr_at_1
value: 35.35
- type: mrr_at_10
value: 42.936
- type: mrr_at_100
value: 43.69
- type: mrr_at_1000
value: 43.739
- type: mrr_at_3
value: 41.062
- type: mrr_at_5
value: 42.097
- type: ndcg_at_1
value: 35.35
- type: ndcg_at_10
value: 42.528
- type: ndcg_at_100
value: 46.983000000000004
- type: ndcg_at_1000
value: 49.187999999999995
- type: ndcg_at_3
value: 39.271
- type: ndcg_at_5
value: 40.654
- type: precision_at_1
value: 35.35
- type: precision_at_10
value: 7.828
- type: precision_at_100
value: 1.3010000000000002
- type: precision_at_1000
value: 0.17700000000000002
- type: precision_at_3
value: 18.96
- type: precision_at_5
value: 13.120999999999999
- type: recall_at_1
value: 28.778
- type: recall_at_10
value: 50.775000000000006
- type: recall_at_100
value: 69.66799999999999
- type: recall_at_1000
value: 83.638
- type: recall_at_3
value: 40.757
- type: recall_at_5
value: 44.86
- type: map_at_1
value: 37.584
- type: map_at_10
value: 49.69
- type: map_at_100
value: 50.639
- type: map_at_1000
value: 50.702999999999996
- type: map_at_3
value: 46.61
- type: map_at_5
value: 48.486000000000004
- type: mrr_at_1
value: 43.009
- type: mrr_at_10
value: 52.949999999999996
- type: mrr_at_100
value: 53.618
- type: mrr_at_1000
value: 53.65299999999999
- type: mrr_at_3
value: 50.605999999999995
- type: mrr_at_5
value: 52.095
- type: ndcg_at_1
value: 43.009
- type: ndcg_at_10
value: 55.278000000000006
- type: ndcg_at_100
value: 59.134
- type: ndcg_at_1000
value: 60.528999999999996
- type: ndcg_at_3
value: 50.184
- type: ndcg_at_5
value: 52.919000000000004
- type: precision_at_1
value: 43.009
- type: precision_at_10
value: 8.821
- type: precision_at_100
value: 1.161
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 22.424
- type: precision_at_5
value: 15.436
- type: recall_at_1
value: 37.584
- type: recall_at_10
value: 68.514
- type: recall_at_100
value: 85.099
- type: recall_at_1000
value: 95.123
- type: recall_at_3
value: 55.007
- type: recall_at_5
value: 61.714999999999996
- type: map_at_1
value: 24.7
- type: map_at_10
value: 32.804
- type: map_at_100
value: 33.738
- type: map_at_1000
value: 33.825
- type: map_at_3
value: 30.639
- type: map_at_5
value: 31.781
- type: mrr_at_1
value: 26.328000000000003
- type: mrr_at_10
value: 34.679
- type: mrr_at_100
value: 35.510000000000005
- type: mrr_at_1000
value: 35.577999999999996
- type: mrr_at_3
value: 32.58
- type: mrr_at_5
value: 33.687
- type: ndcg_at_1
value: 26.328000000000003
- type: ndcg_at_10
value: 37.313
- type: ndcg_at_100
value: 42.004000000000005
- type: ndcg_at_1000
value: 44.232
- type: ndcg_at_3
value: 33.076
- type: ndcg_at_5
value: 34.966
- type: precision_at_1
value: 26.328000000000003
- type: precision_at_10
value: 5.627
- type: precision_at_100
value: 0.8410000000000001
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 14.011000000000001
- type: precision_at_5
value: 9.582
- type: recall_at_1
value: 24.7
- type: recall_at_10
value: 49.324
- type: recall_at_100
value: 71.018
- type: recall_at_1000
value: 87.905
- type: recall_at_3
value: 37.7
- type: recall_at_5
value: 42.281
- type: map_at_1
value: 14.350999999999999
- type: map_at_10
value: 21.745
- type: map_at_100
value: 22.731
- type: map_at_1000
value: 22.852
- type: map_at_3
value: 19.245
- type: map_at_5
value: 20.788
- type: mrr_at_1
value: 18.159
- type: mrr_at_10
value: 25.833000000000002
- type: mrr_at_100
value: 26.728
- type: mrr_at_1000
value: 26.802
- type: mrr_at_3
value: 23.383000000000003
- type: mrr_at_5
value: 24.887999999999998
- type: ndcg_at_1
value: 18.159
- type: ndcg_at_10
value: 26.518000000000004
- type: ndcg_at_100
value: 31.473000000000003
- type: ndcg_at_1000
value: 34.576
- type: ndcg_at_3
value: 21.907
- type: ndcg_at_5
value: 24.39
- type: precision_at_1
value: 18.159
- type: precision_at_10
value: 4.938
- type: precision_at_100
value: 0.853
- type: precision_at_1000
value: 0.125
- type: precision_at_3
value: 10.655000000000001
- type: precision_at_5
value: 7.985
- type: recall_at_1
value: 14.350999999999999
- type: recall_at_10
value: 37.284
- type: recall_at_100
value: 59.11300000000001
- type: recall_at_1000
value: 81.634
- type: recall_at_3
value: 24.753
- type: recall_at_5
value: 30.979
- type: map_at_1
value: 26.978
- type: map_at_10
value: 36.276
- type: map_at_100
value: 37.547000000000004
- type: map_at_1000
value: 37.678
- type: map_at_3
value: 33.674
- type: map_at_5
value: 35.119
- type: mrr_at_1
value: 32.916000000000004
- type: mrr_at_10
value: 41.798
- type: mrr_at_100
value: 42.72
- type: mrr_at_1000
value: 42.778
- type: mrr_at_3
value: 39.493
- type: mrr_at_5
value: 40.927
- type: ndcg_at_1
value: 32.916000000000004
- type: ndcg_at_10
value: 41.81
- type: ndcg_at_100
value: 47.284
- type: ndcg_at_1000
value: 49.702
- type: ndcg_at_3
value: 37.486999999999995
- type: ndcg_at_5
value: 39.597
- type: precision_at_1
value: 32.916000000000004
- type: precision_at_10
value: 7.411
- type: precision_at_100
value: 1.189
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 17.581
- type: precision_at_5
value: 12.397
- type: recall_at_1
value: 26.978
- type: recall_at_10
value: 52.869
- type: recall_at_100
value: 75.78399999999999
- type: recall_at_1000
value: 91.545
- type: recall_at_3
value: 40.717
- type: recall_at_5
value: 46.168
- type: map_at_1
value: 24.641
- type: map_at_10
value: 32.916000000000004
- type: map_at_100
value: 34.165
- type: map_at_1000
value: 34.286
- type: map_at_3
value: 30.335
- type: map_at_5
value: 31.569000000000003
- type: mrr_at_1
value: 30.593999999999998
- type: mrr_at_10
value: 38.448
- type: mrr_at_100
value: 39.299
- type: mrr_at_1000
value: 39.362
- type: mrr_at_3
value: 36.244
- type: mrr_at_5
value: 37.232
- type: ndcg_at_1
value: 30.593999999999998
- type: ndcg_at_10
value: 38.2
- type: ndcg_at_100
value: 43.742
- type: ndcg_at_1000
value: 46.217000000000006
- type: ndcg_at_3
value: 33.925
- type: ndcg_at_5
value: 35.394
- type: precision_at_1
value: 30.593999999999998
- type: precision_at_10
value: 6.895
- type: precision_at_100
value: 1.1320000000000001
- type: precision_at_1000
value: 0.153
- type: precision_at_3
value: 16.096
- type: precision_at_5
value: 11.05
- type: recall_at_1
value: 24.641
- type: recall_at_10
value: 48.588
- type: recall_at_100
value: 72.841
- type: recall_at_1000
value: 89.535
- type: recall_at_3
value: 36.087
- type: recall_at_5
value: 40.346
- type: map_at_1
value: 24.79425
- type: map_at_10
value: 33.12033333333333
- type: map_at_100
value: 34.221333333333334
- type: map_at_1000
value: 34.3435
- type: map_at_3
value: 30.636583333333338
- type: map_at_5
value: 31.974083333333326
- type: mrr_at_1
value: 29.242416666666664
- type: mrr_at_10
value: 37.11675
- type: mrr_at_100
value: 37.93783333333334
- type: mrr_at_1000
value: 38.003083333333336
- type: mrr_at_3
value: 34.904666666666664
- type: mrr_at_5
value: 36.12916666666667
- type: ndcg_at_1
value: 29.242416666666664
- type: ndcg_at_10
value: 38.03416666666667
- type: ndcg_at_100
value: 42.86674999999999
- type: ndcg_at_1000
value: 45.34550000000001
- type: ndcg_at_3
value: 33.76466666666666
- type: ndcg_at_5
value: 35.668666666666674
- type: precision_at_1
value: 29.242416666666664
- type: precision_at_10
value: 6.589833333333334
- type: precision_at_100
value: 1.0693333333333332
- type: precision_at_1000
value: 0.14641666666666667
- type: precision_at_3
value: 15.430749999999998
- type: precision_at_5
value: 10.833833333333333
- type: recall_at_1
value: 24.79425
- type: recall_at_10
value: 48.582916666666655
- type: recall_at_100
value: 69.88499999999999
- type: recall_at_1000
value: 87.211
- type: recall_at_3
value: 36.625499999999995
- type: recall_at_5
value: 41.553999999999995
- type: map_at_1
value: 22.767
- type: map_at_10
value: 28.450999999999997
- type: map_at_100
value: 29.332
- type: map_at_1000
value: 29.426000000000002
- type: map_at_3
value: 26.379
- type: map_at_5
value: 27.584999999999997
- type: mrr_at_1
value: 25.46
- type: mrr_at_10
value: 30.974
- type: mrr_at_100
value: 31.784000000000002
- type: mrr_at_1000
value: 31.857999999999997
- type: mrr_at_3
value: 28.962
- type: mrr_at_5
value: 30.066
- type: ndcg_at_1
value: 25.46
- type: ndcg_at_10
value: 32.041
- type: ndcg_at_100
value: 36.522
- type: ndcg_at_1000
value: 39.101
- type: ndcg_at_3
value: 28.152
- type: ndcg_at_5
value: 30.03
- type: precision_at_1
value: 25.46
- type: precision_at_10
value: 4.893
- type: precision_at_100
value: 0.77
- type: precision_at_1000
value: 0.107
- type: precision_at_3
value: 11.605
- type: precision_at_5
value: 8.19
- type: recall_at_1
value: 22.767
- type: recall_at_10
value: 40.71
- type: recall_at_100
value: 61.334999999999994
- type: recall_at_1000
value: 80.567
- type: recall_at_3
value: 30.198000000000004
- type: recall_at_5
value: 34.803
- type: map_at_1
value: 16.722
- type: map_at_10
value: 22.794
- type: map_at_100
value: 23.7
- type: map_at_1000
value: 23.822
- type: map_at_3
value: 20.781
- type: map_at_5
value: 22.024
- type: mrr_at_1
value: 20.061999999999998
- type: mrr_at_10
value: 26.346999999999998
- type: mrr_at_100
value: 27.153
- type: mrr_at_1000
value: 27.233
- type: mrr_at_3
value: 24.375
- type: mrr_at_5
value: 25.593
- type: ndcg_at_1
value: 20.061999999999998
- type: ndcg_at_10
value: 26.785999999999998
- type: ndcg_at_100
value: 31.319999999999997
- type: ndcg_at_1000
value: 34.346
- type: ndcg_at_3
value: 23.219
- type: ndcg_at_5
value: 25.107000000000003
- type: precision_at_1
value: 20.061999999999998
- type: precision_at_10
value: 4.78
- type: precision_at_100
value: 0.83
- type: precision_at_1000
value: 0.125
- type: precision_at_3
value: 10.874
- type: precision_at_5
value: 7.956
- type: recall_at_1
value: 16.722
- type: recall_at_10
value: 35.204
- type: recall_at_100
value: 55.797
- type: recall_at_1000
value: 77.689
- type: recall_at_3
value: 25.245
- type: recall_at_5
value: 30.115
- type: map_at_1
value: 24.842
- type: map_at_10
value: 32.917
- type: map_at_100
value: 33.961000000000006
- type: map_at_1000
value: 34.069
- type: map_at_3
value: 30.595
- type: map_at_5
value: 31.837
- type: mrr_at_1
value: 29.011
- type: mrr_at_10
value: 36.977
- type: mrr_at_100
value: 37.814
- type: mrr_at_1000
value: 37.885999999999996
- type: mrr_at_3
value: 34.966
- type: mrr_at_5
value: 36.043
- type: ndcg_at_1
value: 29.011
- type: ndcg_at_10
value: 37.735
- type: ndcg_at_100
value: 42.683
- type: ndcg_at_1000
value: 45.198
- type: ndcg_at_3
value: 33.650000000000006
- type: ndcg_at_5
value: 35.386
- type: precision_at_1
value: 29.011
- type: precision_at_10
value: 6.259
- type: precision_at_100
value: 0.984
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 15.329999999999998
- type: precision_at_5
value: 10.541
- type: recall_at_1
value: 24.842
- type: recall_at_10
value: 48.304
- type: recall_at_100
value: 70.04899999999999
- type: recall_at_1000
value: 87.82600000000001
- type: recall_at_3
value: 36.922
- type: recall_at_5
value: 41.449999999999996
- type: map_at_1
value: 24.252000000000002
- type: map_at_10
value: 32.293
- type: map_at_100
value: 33.816
- type: map_at_1000
value: 34.053
- type: map_at_3
value: 29.781999999999996
- type: map_at_5
value: 31.008000000000003
- type: mrr_at_1
value: 29.051
- type: mrr_at_10
value: 36.722
- type: mrr_at_100
value: 37.663000000000004
- type: mrr_at_1000
value: 37.734
- type: mrr_at_3
value: 34.354
- type: mrr_at_5
value: 35.609
- type: ndcg_at_1
value: 29.051
- type: ndcg_at_10
value: 37.775999999999996
- type: ndcg_at_100
value: 43.221
- type: ndcg_at_1000
value: 46.116
- type: ndcg_at_3
value: 33.403
- type: ndcg_at_5
value: 35.118
- type: precision_at_1
value: 29.051
- type: precision_at_10
value: 7.332
- type: precision_at_100
value: 1.49
- type: precision_at_1000
value: 0.23600000000000002
- type: precision_at_3
value: 15.415000000000001
- type: precision_at_5
value: 11.107
- type: recall_at_1
value: 24.252000000000002
- type: recall_at_10
value: 47.861
- type: recall_at_100
value: 72.21600000000001
- type: recall_at_1000
value: 90.886
- type: recall_at_3
value: 35.533
- type: recall_at_5
value: 39.959
- type: map_at_1
value: 20.025000000000002
- type: map_at_10
value: 27.154
- type: map_at_100
value: 28.118
- type: map_at_1000
value: 28.237000000000002
- type: map_at_3
value: 25.017
- type: map_at_5
value: 25.832
- type: mrr_at_1
value: 21.627
- type: mrr_at_10
value: 28.884999999999998
- type: mrr_at_100
value: 29.741
- type: mrr_at_1000
value: 29.831999999999997
- type: mrr_at_3
value: 26.741
- type: mrr_at_5
value: 27.628000000000004
- type: ndcg_at_1
value: 21.627
- type: ndcg_at_10
value: 31.436999999999998
- type: ndcg_at_100
value: 36.181000000000004
- type: ndcg_at_1000
value: 38.986
- type: ndcg_at_3
value: 27.025
- type: ndcg_at_5
value: 28.436
- type: precision_at_1
value: 21.627
- type: precision_at_10
value: 5.009
- type: precision_at_100
value: 0.7929999999999999
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 11.522
- type: precision_at_5
value: 7.763000000000001
- type: recall_at_1
value: 20.025000000000002
- type: recall_at_10
value: 42.954
- type: recall_at_100
value: 64.67500000000001
- type: recall_at_1000
value: 85.301
- type: recall_at_3
value: 30.892999999999997
- type: recall_at_5
value: 34.288000000000004
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.079
- type: map_at_10
value: 16.930999999999997
- type: map_at_100
value: 18.398999999999997
- type: map_at_1000
value: 18.561
- type: map_at_3
value: 14.294
- type: map_at_5
value: 15.579
- type: mrr_at_1
value: 22.606
- type: mrr_at_10
value: 32.513
- type: mrr_at_100
value: 33.463
- type: mrr_at_1000
value: 33.513999999999996
- type: mrr_at_3
value: 29.479
- type: mrr_at_5
value: 31.3
- type: ndcg_at_1
value: 22.606
- type: ndcg_at_10
value: 24.053
- type: ndcg_at_100
value: 30.258000000000003
- type: ndcg_at_1000
value: 33.516
- type: ndcg_at_3
value: 19.721
- type: ndcg_at_5
value: 21.144
- type: precision_at_1
value: 22.606
- type: precision_at_10
value: 7.55
- type: precision_at_100
value: 1.399
- type: precision_at_1000
value: 0.2
- type: precision_at_3
value: 14.701
- type: precision_at_5
value: 11.192
- type: recall_at_1
value: 10.079
- type: recall_at_10
value: 28.970000000000002
- type: recall_at_100
value: 50.805
- type: recall_at_1000
value: 69.378
- type: recall_at_3
value: 18.199
- type: recall_at_5
value: 22.442
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.794
- type: map_at_10
value: 15.165999999999999
- type: map_at_100
value: 20.508000000000003
- type: map_at_1000
value: 21.809
- type: map_at_3
value: 11.568000000000001
- type: map_at_5
value: 13.059000000000001
- type: mrr_at_1
value: 56.49999999999999
- type: mrr_at_10
value: 65.90899999999999
- type: mrr_at_100
value: 66.352
- type: mrr_at_1000
value: 66.369
- type: mrr_at_3
value: 64.0
- type: mrr_at_5
value: 65.10000000000001
- type: ndcg_at_1
value: 44.25
- type: ndcg_at_10
value: 32.649
- type: ndcg_at_100
value: 36.668
- type: ndcg_at_1000
value: 43.918
- type: ndcg_at_3
value: 37.096000000000004
- type: ndcg_at_5
value: 34.048
- type: precision_at_1
value: 56.49999999999999
- type: precision_at_10
value: 25.45
- type: precision_at_100
value: 8.055
- type: precision_at_1000
value: 1.7489999999999999
- type: precision_at_3
value: 41.0
- type: precision_at_5
value: 32.85
- type: recall_at_1
value: 7.794
- type: recall_at_10
value: 20.101
- type: recall_at_100
value: 42.448
- type: recall_at_1000
value: 65.88000000000001
- type: recall_at_3
value: 12.753
- type: recall_at_5
value: 15.307
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 44.01
- type: f1
value: 38.659680951114964
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 49.713
- type: map_at_10
value: 61.79
- type: map_at_100
value: 62.28
- type: map_at_1000
value: 62.297000000000004
- type: map_at_3
value: 59.361
- type: map_at_5
value: 60.92100000000001
- type: mrr_at_1
value: 53.405
- type: mrr_at_10
value: 65.79899999999999
- type: mrr_at_100
value: 66.219
- type: mrr_at_1000
value: 66.227
- type: mrr_at_3
value: 63.431000000000004
- type: mrr_at_5
value: 64.98
- type: ndcg_at_1
value: 53.405
- type: ndcg_at_10
value: 68.01899999999999
- type: ndcg_at_100
value: 70.197
- type: ndcg_at_1000
value: 70.571
- type: ndcg_at_3
value: 63.352
- type: ndcg_at_5
value: 66.018
- type: precision_at_1
value: 53.405
- type: precision_at_10
value: 9.119
- type: precision_at_100
value: 1.03
- type: precision_at_1000
value: 0.107
- type: precision_at_3
value: 25.602999999999998
- type: precision_at_5
value: 16.835
- type: recall_at_1
value: 49.713
- type: recall_at_10
value: 83.306
- type: recall_at_100
value: 92.92
- type: recall_at_1000
value: 95.577
- type: recall_at_3
value: 70.798
- type: recall_at_5
value: 77.254
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.310000000000002
- type: map_at_10
value: 26.204
- type: map_at_100
value: 27.932000000000002
- type: map_at_1000
value: 28.121000000000002
- type: map_at_3
value: 22.481
- type: map_at_5
value: 24.678
- type: mrr_at_1
value: 29.784
- type: mrr_at_10
value: 39.582
- type: mrr_at_100
value: 40.52
- type: mrr_at_1000
value: 40.568
- type: mrr_at_3
value: 37.114000000000004
- type: mrr_at_5
value: 38.596000000000004
- type: ndcg_at_1
value: 29.784
- type: ndcg_at_10
value: 33.432
- type: ndcg_at_100
value: 40.281
- type: ndcg_at_1000
value: 43.653999999999996
- type: ndcg_at_3
value: 29.612
- type: ndcg_at_5
value: 31.223
- type: precision_at_1
value: 29.784
- type: precision_at_10
value: 9.645
- type: precision_at_100
value: 1.645
- type: precision_at_1000
value: 0.22499999999999998
- type: precision_at_3
value: 20.165
- type: precision_at_5
value: 15.401000000000002
- type: recall_at_1
value: 15.310000000000002
- type: recall_at_10
value: 40.499
- type: recall_at_100
value: 66.643
- type: recall_at_1000
value: 87.059
- type: recall_at_3
value: 27.492
- type: recall_at_5
value: 33.748
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 33.599000000000004
- type: map_at_10
value: 47.347
- type: map_at_100
value: 48.191
- type: map_at_1000
value: 48.263
- type: map_at_3
value: 44.698
- type: map_at_5
value: 46.278999999999996
- type: mrr_at_1
value: 67.19800000000001
- type: mrr_at_10
value: 74.054
- type: mrr_at_100
value: 74.376
- type: mrr_at_1000
value: 74.392
- type: mrr_at_3
value: 72.849
- type: mrr_at_5
value: 73.643
- type: ndcg_at_1
value: 67.19800000000001
- type: ndcg_at_10
value: 56.482
- type: ndcg_at_100
value: 59.694
- type: ndcg_at_1000
value: 61.204
- type: ndcg_at_3
value: 52.43299999999999
- type: ndcg_at_5
value: 54.608000000000004
- type: precision_at_1
value: 67.19800000000001
- type: precision_at_10
value: 11.613999999999999
- type: precision_at_100
value: 1.415
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_3
value: 32.726
- type: precision_at_5
value: 21.349999999999998
- type: recall_at_1
value: 33.599000000000004
- type: recall_at_10
value: 58.069
- type: recall_at_100
value: 70.736
- type: recall_at_1000
value: 80.804
- type: recall_at_3
value: 49.088
- type: recall_at_5
value: 53.376000000000005
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 73.64359999999999
- type: ap
value: 67.54685976014599
- type: f1
value: 73.55148707559482
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 19.502
- type: map_at_10
value: 30.816
- type: map_at_100
value: 32.007999999999996
- type: map_at_1000
value: 32.067
- type: map_at_3
value: 27.215
- type: map_at_5
value: 29.304000000000002
- type: mrr_at_1
value: 20.072000000000003
- type: mrr_at_10
value: 31.406
- type: mrr_at_100
value: 32.549
- type: mrr_at_1000
value: 32.602
- type: mrr_at_3
value: 27.839000000000002
- type: mrr_at_5
value: 29.926000000000002
- type: ndcg_at_1
value: 20.086000000000002
- type: ndcg_at_10
value: 37.282
- type: ndcg_at_100
value: 43.206
- type: ndcg_at_1000
value: 44.690000000000005
- type: ndcg_at_3
value: 29.932
- type: ndcg_at_5
value: 33.668
- type: precision_at_1
value: 20.086000000000002
- type: precision_at_10
value: 5.961
- type: precision_at_100
value: 0.898
- type: precision_at_1000
value: 0.10200000000000001
- type: precision_at_3
value: 12.856000000000002
- type: precision_at_5
value: 9.596
- type: recall_at_1
value: 19.502
- type: recall_at_10
value: 57.182
- type: recall_at_100
value: 84.952
- type: recall_at_1000
value: 96.34700000000001
- type: recall_at_3
value: 37.193
- type: recall_at_5
value: 46.157
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.96488828089375
- type: f1
value: 93.32119260543482
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 72.4965800273598
- type: f1
value: 49.34896217536082
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.60928043039678
- type: f1
value: 64.34244712074538
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.75453934095493
- type: f1
value: 68.39224867489249
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.862573504920082
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 27.511123551196803
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.99145104942086
- type: mrr
value: 32.03606480418627
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.015
- type: map_at_10
value: 11.054
- type: map_at_100
value: 13.773
- type: map_at_1000
value: 15.082999999999998
- type: map_at_3
value: 8.253
- type: map_at_5
value: 9.508999999999999
- type: mrr_at_1
value: 42.105
- type: mrr_at_10
value: 50.44499999999999
- type: mrr_at_100
value: 51.080000000000005
- type: mrr_at_1000
value: 51.129999999999995
- type: mrr_at_3
value: 48.555
- type: mrr_at_5
value: 49.84
- type: ndcg_at_1
value: 40.402
- type: ndcg_at_10
value: 30.403000000000002
- type: ndcg_at_100
value: 28.216
- type: ndcg_at_1000
value: 37.021
- type: ndcg_at_3
value: 35.53
- type: ndcg_at_5
value: 33.202999999999996
- type: precision_at_1
value: 42.105
- type: precision_at_10
value: 22.353
- type: precision_at_100
value: 7.266
- type: precision_at_1000
value: 2.011
- type: precision_at_3
value: 32.921
- type: precision_at_5
value: 28.297
- type: recall_at_1
value: 5.015
- type: recall_at_10
value: 14.393
- type: recall_at_100
value: 28.893
- type: recall_at_1000
value: 60.18
- type: recall_at_3
value: 9.184000000000001
- type: recall_at_5
value: 11.39
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.524
- type: map_at_10
value: 44.182
- type: map_at_100
value: 45.228
- type: map_at_1000
value: 45.265
- type: map_at_3
value: 39.978
- type: map_at_5
value: 42.482
- type: mrr_at_1
value: 33.256
- type: mrr_at_10
value: 46.661
- type: mrr_at_100
value: 47.47
- type: mrr_at_1000
value: 47.496
- type: mrr_at_3
value: 43.187999999999995
- type: mrr_at_5
value: 45.330999999999996
- type: ndcg_at_1
value: 33.227000000000004
- type: ndcg_at_10
value: 51.589
- type: ndcg_at_100
value: 56.043
- type: ndcg_at_1000
value: 56.937000000000005
- type: ndcg_at_3
value: 43.751
- type: ndcg_at_5
value: 47.937000000000005
- type: precision_at_1
value: 33.227000000000004
- type: precision_at_10
value: 8.556999999999999
- type: precision_at_100
value: 1.103
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_3
value: 19.921
- type: precision_at_5
value: 14.396999999999998
- type: recall_at_1
value: 29.524
- type: recall_at_10
value: 71.615
- type: recall_at_100
value: 91.056
- type: recall_at_1000
value: 97.72800000000001
- type: recall_at_3
value: 51.451
- type: recall_at_5
value: 61.119
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 69.596
- type: map_at_10
value: 83.281
- type: map_at_100
value: 83.952
- type: map_at_1000
value: 83.97200000000001
- type: map_at_3
value: 80.315
- type: map_at_5
value: 82.223
- type: mrr_at_1
value: 80.17
- type: mrr_at_10
value: 86.522
- type: mrr_at_100
value: 86.644
- type: mrr_at_1000
value: 86.64500000000001
- type: mrr_at_3
value: 85.438
- type: mrr_at_5
value: 86.21799999999999
- type: ndcg_at_1
value: 80.19
- type: ndcg_at_10
value: 87.19
- type: ndcg_at_100
value: 88.567
- type: ndcg_at_1000
value: 88.70400000000001
- type: ndcg_at_3
value: 84.17999999999999
- type: ndcg_at_5
value: 85.931
- type: precision_at_1
value: 80.19
- type: precision_at_10
value: 13.209000000000001
- type: precision_at_100
value: 1.518
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 36.717
- type: precision_at_5
value: 24.248
- type: recall_at_1
value: 69.596
- type: recall_at_10
value: 94.533
- type: recall_at_100
value: 99.322
- type: recall_at_1000
value: 99.965
- type: recall_at_3
value: 85.911
- type: recall_at_5
value: 90.809
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 49.27650627571912
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 57.08550946534183
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.568
- type: map_at_10
value: 10.862
- type: map_at_100
value: 12.757
- type: map_at_1000
value: 13.031
- type: map_at_3
value: 7.960000000000001
- type: map_at_5
value: 9.337
- type: mrr_at_1
value: 22.5
- type: mrr_at_10
value: 32.6
- type: mrr_at_100
value: 33.603
- type: mrr_at_1000
value: 33.672000000000004
- type: mrr_at_3
value: 29.299999999999997
- type: mrr_at_5
value: 31.25
- type: ndcg_at_1
value: 22.5
- type: ndcg_at_10
value: 18.605
- type: ndcg_at_100
value: 26.029999999999998
- type: ndcg_at_1000
value: 31.256
- type: ndcg_at_3
value: 17.873
- type: ndcg_at_5
value: 15.511
- type: precision_at_1
value: 22.5
- type: precision_at_10
value: 9.58
- type: precision_at_100
value: 2.033
- type: precision_at_1000
value: 0.33
- type: precision_at_3
value: 16.633
- type: precision_at_5
value: 13.54
- type: recall_at_1
value: 4.568
- type: recall_at_10
value: 19.402
- type: recall_at_100
value: 41.277
- type: recall_at_1000
value: 66.963
- type: recall_at_3
value: 10.112
- type: recall_at_5
value: 13.712
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.31992291680787
- type: cos_sim_spearman
value: 76.7212346922664
- type: euclidean_pearson
value: 80.42189271706478
- type: euclidean_spearman
value: 76.7212342532493
- type: manhattan_pearson
value: 80.33171093031578
- type: manhattan_spearman
value: 76.63192883074694
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 83.16654278886763
- type: cos_sim_spearman
value: 73.66390263429565
- type: euclidean_pearson
value: 79.7485360086639
- type: euclidean_spearman
value: 73.66389870373436
- type: manhattan_pearson
value: 79.73652237443706
- type: manhattan_spearman
value: 73.65296117151647
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 82.40389689929246
- type: cos_sim_spearman
value: 83.29727595993955
- type: euclidean_pearson
value: 82.23970587854079
- type: euclidean_spearman
value: 83.29727595993955
- type: manhattan_pearson
value: 82.18823600831897
- type: manhattan_spearman
value: 83.20746192209594
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 81.73505246913413
- type: cos_sim_spearman
value: 79.1686548248754
- type: euclidean_pearson
value: 80.48889135993412
- type: euclidean_spearman
value: 79.16864112930354
- type: manhattan_pearson
value: 80.40720651057302
- type: manhattan_spearman
value: 79.0640155089286
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 86.3953512879065
- type: cos_sim_spearman
value: 87.29947322714338
- type: euclidean_pearson
value: 86.59759438529645
- type: euclidean_spearman
value: 87.29947511092824
- type: manhattan_pearson
value: 86.52097806169155
- type: manhattan_spearman
value: 87.22987242146534
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 82.48565753792056
- type: cos_sim_spearman
value: 83.6049720319893
- type: euclidean_pearson
value: 82.56452023172913
- type: euclidean_spearman
value: 83.60490168191697
- type: manhattan_pearson
value: 82.58079941137872
- type: manhattan_spearman
value: 83.60975807374051
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 88.18239976618212
- type: cos_sim_spearman
value: 88.23061724730616
- type: euclidean_pearson
value: 87.78482472776658
- type: euclidean_spearman
value: 88.23061724730616
- type: manhattan_pearson
value: 87.75059641730239
- type: manhattan_spearman
value: 88.22527413524622
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 63.42816418706765
- type: cos_sim_spearman
value: 63.4569864520124
- type: euclidean_pearson
value: 64.35405409953853
- type: euclidean_spearman
value: 63.4569864520124
- type: manhattan_pearson
value: 63.96649236073056
- type: manhattan_spearman
value: 63.01448583722708
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 83.41659638047614
- type: cos_sim_spearman
value: 84.03893866106175
- type: euclidean_pearson
value: 84.2251203953798
- type: euclidean_spearman
value: 84.03893866106175
- type: manhattan_pearson
value: 84.22733643205514
- type: manhattan_spearman
value: 84.06504411263612
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 79.75608022582414
- type: mrr
value: 94.0947732369301
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 50.161
- type: map_at_10
value: 59.458999999999996
- type: map_at_100
value: 60.156
- type: map_at_1000
value: 60.194
- type: map_at_3
value: 56.45400000000001
- type: map_at_5
value: 58.165
- type: mrr_at_1
value: 53.333
- type: mrr_at_10
value: 61.050000000000004
- type: mrr_at_100
value: 61.586
- type: mrr_at_1000
value: 61.624
- type: mrr_at_3
value: 58.889
- type: mrr_at_5
value: 60.122
- type: ndcg_at_1
value: 53.333
- type: ndcg_at_10
value: 63.888999999999996
- type: ndcg_at_100
value: 66.963
- type: ndcg_at_1000
value: 68.062
- type: ndcg_at_3
value: 59.01
- type: ndcg_at_5
value: 61.373999999999995
- type: precision_at_1
value: 53.333
- type: precision_at_10
value: 8.633000000000001
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 23.111
- type: precision_at_5
value: 15.467
- type: recall_at_1
value: 50.161
- type: recall_at_10
value: 75.922
- type: recall_at_100
value: 90.0
- type: recall_at_1000
value: 98.667
- type: recall_at_3
value: 62.90599999999999
- type: recall_at_5
value: 68.828
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.81188118811882
- type: cos_sim_ap
value: 95.11619225962413
- type: cos_sim_f1
value: 90.35840484603736
- type: cos_sim_precision
value: 91.23343527013252
- type: cos_sim_recall
value: 89.5
- type: dot_accuracy
value: 99.81188118811882
- type: dot_ap
value: 95.11619225962413
- type: dot_f1
value: 90.35840484603736
- type: dot_precision
value: 91.23343527013252
- type: dot_recall
value: 89.5
- type: euclidean_accuracy
value: 99.81188118811882
- type: euclidean_ap
value: 95.11619225962413
- type: euclidean_f1
value: 90.35840484603736
- type: euclidean_precision
value: 91.23343527013252
- type: euclidean_recall
value: 89.5
- type: manhattan_accuracy
value: 99.80891089108911
- type: manhattan_ap
value: 95.07294266220966
- type: manhattan_f1
value: 90.21794221996959
- type: manhattan_precision
value: 91.46968139773895
- type: manhattan_recall
value: 89.0
- type: max_accuracy
value: 99.81188118811882
- type: max_ap
value: 95.11619225962413
- type: max_f1
value: 90.35840484603736
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 55.3481874105239
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 34.421291695525
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 49.98746633276634
- type: mrr
value: 50.63143249724133
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.009961979844036
- type: cos_sim_spearman
value: 30.558416108881044
- type: dot_pearson
value: 31.009964941134253
- type: dot_spearman
value: 30.545760761761393
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.207
- type: map_at_10
value: 1.6
- type: map_at_100
value: 8.594
- type: map_at_1000
value: 20.213
- type: map_at_3
value: 0.585
- type: map_at_5
value: 0.9039999999999999
- type: mrr_at_1
value: 78.0
- type: mrr_at_10
value: 87.4
- type: mrr_at_100
value: 87.4
- type: mrr_at_1000
value: 87.4
- type: mrr_at_3
value: 86.667
- type: mrr_at_5
value: 87.06700000000001
- type: ndcg_at_1
value: 73.0
- type: ndcg_at_10
value: 65.18
- type: ndcg_at_100
value: 49.631
- type: ndcg_at_1000
value: 43.498999999999995
- type: ndcg_at_3
value: 71.83800000000001
- type: ndcg_at_5
value: 69.271
- type: precision_at_1
value: 78.0
- type: precision_at_10
value: 69.19999999999999
- type: precision_at_100
value: 50.980000000000004
- type: precision_at_1000
value: 19.426
- type: precision_at_3
value: 77.333
- type: precision_at_5
value: 74.0
- type: recall_at_1
value: 0.207
- type: recall_at_10
value: 1.822
- type: recall_at_100
value: 11.849
- type: recall_at_1000
value: 40.492
- type: recall_at_3
value: 0.622
- type: recall_at_5
value: 0.9809999999999999
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.001
- type: map_at_10
value: 10.376000000000001
- type: map_at_100
value: 16.936999999999998
- type: map_at_1000
value: 18.615000000000002
- type: map_at_3
value: 5.335999999999999
- type: map_at_5
value: 7.374
- type: mrr_at_1
value: 20.408
- type: mrr_at_10
value: 38.29
- type: mrr_at_100
value: 39.33
- type: mrr_at_1000
value: 39.347
- type: mrr_at_3
value: 32.993
- type: mrr_at_5
value: 36.973
- type: ndcg_at_1
value: 17.347
- type: ndcg_at_10
value: 23.515
- type: ndcg_at_100
value: 37.457
- type: ndcg_at_1000
value: 49.439
- type: ndcg_at_3
value: 22.762999999999998
- type: ndcg_at_5
value: 22.622
- type: precision_at_1
value: 20.408
- type: precision_at_10
value: 22.448999999999998
- type: precision_at_100
value: 8.184
- type: precision_at_1000
value: 1.608
- type: precision_at_3
value: 25.85
- type: precision_at_5
value: 25.306
- type: recall_at_1
value: 2.001
- type: recall_at_10
value: 17.422
- type: recall_at_100
value: 51.532999999999994
- type: recall_at_1000
value: 87.466
- type: recall_at_3
value: 6.861000000000001
- type: recall_at_5
value: 10.502
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.54419999999999
- type: ap
value: 14.372170450843907
- type: f1
value: 54.94420257390529
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 59.402942840973395
- type: f1
value: 59.4166538875571
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 41.569064336457906
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.31322644096085
- type: cos_sim_ap
value: 72.14518894837381
- type: cos_sim_f1
value: 66.67489813557229
- type: cos_sim_precision
value: 62.65954977953121
- type: cos_sim_recall
value: 71.2401055408971
- type: dot_accuracy
value: 85.31322644096085
- type: dot_ap
value: 72.14521480685293
- type: dot_f1
value: 66.67489813557229
- type: dot_precision
value: 62.65954977953121
- type: dot_recall
value: 71.2401055408971
- type: euclidean_accuracy
value: 85.31322644096085
- type: euclidean_ap
value: 72.14520820485349
- type: euclidean_f1
value: 66.67489813557229
- type: euclidean_precision
value: 62.65954977953121
- type: euclidean_recall
value: 71.2401055408971
- type: manhattan_accuracy
value: 85.21785778148656
- type: manhattan_ap
value: 72.01177147657364
- type: manhattan_f1
value: 66.62594673833374
- type: manhattan_precision
value: 62.0336669699727
- type: manhattan_recall
value: 71.95250659630607
- type: max_accuracy
value: 85.31322644096085
- type: max_ap
value: 72.14521480685293
- type: max_f1
value: 66.67489813557229
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.12756626693057
- type: cos_sim_ap
value: 86.05430786440826
- type: cos_sim_f1
value: 78.27759692216631
- type: cos_sim_precision
value: 75.33466248931929
- type: cos_sim_recall
value: 81.45980905451185
- type: dot_accuracy
value: 89.12950673341872
- type: dot_ap
value: 86.05431161145492
- type: dot_f1
value: 78.27759692216631
- type: dot_precision
value: 75.33466248931929
- type: dot_recall
value: 81.45980905451185
- type: euclidean_accuracy
value: 89.12756626693057
- type: euclidean_ap
value: 86.05431303247397
- type: euclidean_f1
value: 78.27759692216631
- type: euclidean_precision
value: 75.33466248931929
- type: euclidean_recall
value: 81.45980905451185
- type: manhattan_accuracy
value: 89.04994760740482
- type: manhattan_ap
value: 86.00860610892074
- type: manhattan_f1
value: 78.1846776005392
- type: manhattan_precision
value: 76.10438839480975
- type: manhattan_recall
value: 80.3818909762858
- type: max_accuracy
value: 89.12950673341872
- type: max_ap
value: 86.05431303247397
- type: max_f1
value: 78.27759692216631
---
# Emm9625/jina-embeddings-v2-small-en-Q8_0-GGUF
This model was converted to GGUF format from [`jinaai/jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/jinaai/jina-embeddings-v2-small-en) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Emm9625/jina-embeddings-v2-small-en-Q8_0-GGUF --hf-file jina-embeddings-v2-small-en-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Emm9625/jina-embeddings-v2-small-en-Q8_0-GGUF --hf-file jina-embeddings-v2-small-en-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Emm9625/jina-embeddings-v2-small-en-Q8_0-GGUF --hf-file jina-embeddings-v2-small-en-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Emm9625/jina-embeddings-v2-small-en-Q8_0-GGUF --hf-file jina-embeddings-v2-small-en-q8_0.gguf -c 2048
```