leaderboard-pr-bot's picture
Adding Evaluation Results
2eabbf6 verified
|
raw
history blame
4.37 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - NousResearch/Hermes-3-Llama-3.1-8B
  - Replete-AI/Replete-LLM-V2-Llama-3.1-8b
base_model:
  - NousResearch/Hermes-3-Llama-3.1-8B
  - Replete-AI/Replete-LLM-V2-Llama-3.1-8b
model-index:
  - name: Herplete-LLM-Llama-3.1-8b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 46.72
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 28.95
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 2.79
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.81
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.68
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 27.57
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b
          name: Open LLM Leaderboard

Herplete-LLM-Llama-3.1-8b

Herplete-LLM-Llama-3.1-8b is a continuous finetuned model from Replete-AI/Replete-LLM-V2-Llama-3.1-8b using Lora extracted from Hermes-3-Llama-3.1-8B.

You can find the continuous finetuning method here:

https://docs.google.com/document/d/1OjbjU5AOz4Ftn9xHQrX3oFQGhQ6RDUuXQipnQ9gn6tU/edit?usp=sharing

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Etherll/Herplete-LLM-Llama-3.1-8b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 19.59
IFEval (0-Shot) 46.72
BBH (3-Shot) 28.95
MATH Lvl 5 (4-Shot) 2.79
GPQA (0-shot) 4.81
MuSR (0-shot) 6.68
MMLU-PRO (5-shot) 27.57