wav2vec2-base-russian-demo-kaggle

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.9997

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 12
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0102 1.03 500 inf 0.9997
0.0068 2.06 1000 inf 0.9997
0.0 3.09 1500 inf 0.9997
0.0313 4.12 2000 inf 0.9997
0.0 5.15 2500 inf 0.9997
0.0052 6.19 3000 inf 0.9997
0.0287 7.22 3500 inf 0.9997
0.0 8.25 4000 inf 0.9997
0.01 9.28 4500 inf 0.9997
0.0 10.31 5000 inf 0.9997
0.3919 11.34 5500 inf 0.9997
0.0 12.37 6000 inf 0.9997
0.0 13.4 6500 inf 0.9997
0.0 14.43 7000 inf 0.9997
0.6422 15.46 7500 inf 0.9997
0.0 16.49 8000 inf 0.9997
0.0 17.53 8500 inf 0.9997
0.0 18.56 9000 inf 0.9997
0.0 19.59 9500 inf 0.9997
0.0 20.62 10000 inf 0.9997
0.0427 21.65 10500 inf 0.9997
0.0 22.68 11000 inf 0.9997
0.0 23.71 11500 inf 0.9997
0.0 24.74 12000 inf 0.9997
0.0091 25.77 12500 inf 0.9997
0.1243 26.8 13000 inf 0.9997
0.0 27.83 13500 inf 0.9997
0.0 28.87 14000 inf 0.9997
0.0 29.9 14500 inf 0.9997

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.9.1
  • Datasets 1.13.3
  • Tokenizers 0.10.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.