metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.46875
image_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.4916
- Accuracy: 0.4688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 20 | 2.0695 | 0.1812 |
No log | 2.0 | 40 | 2.0566 | 0.2062 |
No log | 3.0 | 60 | 2.0300 | 0.2625 |
No log | 4.0 | 80 | 1.9731 | 0.3125 |
No log | 5.0 | 100 | 1.8858 | 0.3375 |
No log | 6.0 | 120 | 1.7904 | 0.3438 |
No log | 7.0 | 140 | 1.7051 | 0.3875 |
No log | 8.0 | 160 | 1.6312 | 0.4 |
No log | 9.0 | 180 | 1.5429 | 0.45 |
No log | 10.0 | 200 | 1.4916 | 0.4688 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3