metadata
license: llama3
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct
model-index:
- name: 0c862fee-2042-414b-98c3-2b6c8e57613b
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct
bf16: auto
datasets:
- data_files:
- 1cdad3506d86664d_train_data.json
ds_type: json
format: custom
path: 1cdad3506d86664d_train_data.json
type:
field: null
field_input: input
field_instruction: instruction
field_output: output
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: FatCat87/0c862fee-2042-414b-98c3-2b6c8e57613b
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
seed: 701
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: 0c862fee-2042-414b-98c3-2b6c8e57613b
wandb_project: subnet56
wandb_runid: 0c862fee-2042-414b-98c3-2b6c8e57613b
wandb_watch: null
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
0c862fee-2042-414b-98c3-2b6c8e57613b
This model is a fine-tuned version of scb10x/llama-3-typhoon-v1.5-8b-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2348
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 701
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.2967 | 0.1026 | 1 | 3.1530 |
2.7988 | 0.3077 | 3 | 2.5441 |
2.3077 | 0.6154 | 6 | 2.3045 |
2.2536 | 0.9231 | 9 | 2.2348 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1