FatCat87's picture
Training in progress, epoch 0
52d3256 verified
|
raw
history blame
3.65 kB
---
license: mit
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: microsoft/Phi-3.5-mini-instruct
model-index:
- name: bebc098a-34ef-4279-bfd4-76bb95526dba
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: microsoft/Phi-3.5-mini-instruct
bf16: auto
datasets:
- data_files:
- 0e75859cf9d8cc9a_train_data.json
ds_type: json
format: custom
path: 0e75859cf9d8cc9a_train_data.json
type:
field: null
field_input: null
field_instruction: question
field_output: answer
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: FatCat87/bebc098a-34ef-4279-bfd4-76bb95526dba
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
seed: 701
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: bebc098a-34ef-4279-bfd4-76bb95526dba
wandb_project: subnet56
wandb_runid: bebc098a-34ef-4279-bfd4-76bb95526dba
wandb_watch: null
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# bebc098a-34ef-4279-bfd4-76bb95526dba
This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8199
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 701
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.8381 | 0.0435 | 1 | 0.8313 |
| 4.5187 | 0.2609 | 6 | 0.8197 |
| 4.0981 | 0.5217 | 12 | 0.8163 |
| 3.886 | 0.7826 | 18 | 0.8199 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1