Model Card for DeciCoder 1B - CodeAlpaca20k Fine Tuned
This model is a fine tuned version of DeciCoder 1B (https://huggingface.co/Deci/DeciCoder-1b), fine tune for instructions based on Code Alpaca Dataset.
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
Framework versions
- PEFT 0.5.0
Citation
Thanks for DeciCoder-1b team for making this model open sourced.
@misc{DeciFoundationModels,
title = {DeciCoder},
author = {DeciAI Research Team},
year = {2023}
url={[https://huggingface.co/deci/decicoder-1b](https://huggingface.co/deci/decicoder-1b)},
}
- Downloads last month
- 1