metadata
language:
- en
license: apache-2.0
tags:
- text-generation
datasets:
- THUDM/webglm-qa
- databricks/databricks-dolly-15k
- cognitivecomputations/wizard_vicuna_70k_unfiltered
- totally-not-an-llm/EverythingLM-data-V3
- Amod/mental_health_counseling_conversations
- sablo/oasst2_curated
- starfishmedical/webGPT_x_dolly
- Open-Orca/OpenOrca
- mlabonne/chatml_dpo_pairs
base_model: JackFram/llama-68m
widget:
- text: >-
<|im_start|>system
You are a knowledgeable assistant. Help the user as much as you
can.<|im_end|>
<|im_start|>user
How to become healthier?<|im_end|>
<|im_start|>assistant
- text: >-
<|im_start|>system
You are a career counselor. The user will provide you with an individual
looking for guidance in their professional life, and your task is to
assist them in determining what careers they are most suited for based on
their skills, interests, and experience. You should also conduct research
into the various options available, explain the job market trends in
different industries, and advice on which qualifications would be
beneficial for pursuing particular fields.<|im_end|>
<|im_start|>user
Heya!<|im_end|>
<|im_start|>assistant
Hi! How may I help you?<|im_end|>
<|im_start|>user
I am interested in developing a career in software engineering. What would
you recommend me to do?<|im_end|>
<|im_start|>assistant
- text: >-
<|im_start|>system
You are a helpful assistant who provides concise responses.<|im_end|>
<|im_start|>user
Hi!<|im_end|>
<|im_start|>assistant
Hello there! How may I help you?<|im_end|>
<|im_start|>user
I need to build a simple website. Where should I start learning about web
development?<|im_end|>
<|im_start|>assistant
- text: >-
<|im_start|>system
You are a very creative assistant. User will give you a task, which you
should complete with all your knowledge.<|im_end|>
<|im_start|>user
Write the background story of an RPG game about wizards and dragons in a
sci-fi world.<|im_end|>
<|im_start|>assistant
inference:
parameters:
max_new_tokens: 64
penalty_alpha: 0.5
top_k: 4
model-index:
- name: Llama-68M-Chat-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 23.29
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-68M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 28.27
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-68M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-68M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 47.27
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-68M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.3
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-68M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-68M-Chat-v1
name: Open LLM Leaderboard
A Llama Chat Model of 68M Parameters
- Base model: JackFram/llama-68m
- Datasets:
- Availability in other ML formats:
Recommended Prompt Format
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
Recommended Inference Parameters
penalty_alpha: 0.5
top_k: 4
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 29.72 |
AI2 Reasoning Challenge (25-Shot) | 23.29 |
HellaSwag (10-Shot) | 28.27 |
MMLU (5-Shot) | 25.18 |
TruthfulQA (0-shot) | 47.27 |
Winogrande (5-shot) | 54.30 |
GSM8k (5-shot) | 0.00 |