bert-base-japanese-jsnli

This model is a fine-tuned version of cl-tohoku/bert-base-japanese-v2 on the JSNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2085
  • Accuracy: 0.9288

How to use the model

Simple zero-shot classification pipeline

from transformers import pipeline

classifier = pipeline("zero-shot-classification", model="Formzu/bert-base-japanese-jsnli")

sequence_to_classify = "いつか世界を見る。"
candidate_labels = ['旅行', '料理', '踊り']
out = classifier(sequence_to_classify, candidate_labels, hypothesis_template="この例は{}です。")
print(out)
#{'sequence': 'いつか世界を見る。', 
# 'labels': ['旅行', '料理', '踊り'], 
# 'scores': [0.6758995652198792, 0.22110949456691742, 0.1029909998178482]}

NLI use-case

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_name = "Formzu/bert-base-japanese-jsnli"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)

premise = "いつか世界を見る。"
label = '旅行'
hypothesis = f'この例は{label}です。'

input = tokenizer.encode(premise, hypothesis, return_tensors='pt').to(device)
with torch.no_grad():
    logits = model(input)["logits"][0]
    probs = logits.softmax(dim=-1)
    print(probs.cpu().numpy(), logits.cpu().numpy())
#[0.68940836 0.29482093 0.01577068] [ 1.7791482   0.92968255 -1.998533  ]

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4054 1.0 16657 0.2141 0.9216
0.3297 2.0 33314 0.2145 0.9236
0.2645 3.0 49971 0.2085 0.9288

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
51
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results