File size: 3,082 Bytes
592fb1f 84a7f0d 592fb1f 84a7f0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
language:
- ja
license: cc-by-sa-4.0
tags:
- zero-shot-classification
- text-classification
- nli
- pytorch
metrics:
- accuracy
datasets:
- JSNLI
pipeline_tag: text-classification
widget:
- text: "あなたが好きです。 あなたを愛しています。"
model-index:
- name: bert-base-japanese-jsnli
results:
- task:
type: text-classification
name: Natural Language Inference
dataset:
type: snli
name: JSNLI
split: dev
metrics:
- type: accuracy
value: 0.9288
verified: false
---
# bert-base-japanese-jsnli
This model is a fine-tuned version of [cl-tohoku/bert-base-japanese-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) on the [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2085
- Accuracy: 0.9288
### How to use the model
#### Simple zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="Formzu/bert-base-japanese-jsnli")
sequence_to_classify = "いつか世界を見る。"
candidate_labels = ['旅行', '料理', '踊り']
out = classifier(sequence_to_classify, candidate_labels, hypothesis_template="この例は{}です。")
print(out)
#{'sequence': 'いつか世界を見る。',
# 'labels': ['旅行', '料理', '踊り'],
# 'scores': [0.6758995652198792, 0.22110949456691742, 0.1029909998178482]}
```
#### NLI use-case
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_name = "Formzu/bert-base-japanese-jsnli"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
premise = "いつか世界を見る。"
label = '旅行'
hypothesis = f'この例は{label}です。'
input = tokenizer.encode(premise, hypothesis, return_tensors='pt').to(device)
with torch.no_grad():
logits = model(input)["logits"][0]
probs = logits.softmax(dim=-1)
print(probs.cpu().numpy(), logits.cpu().numpy())
#[0.68940836 0.29482093 0.01577068] [ 1.7791482 0.92968255 -1.998533 ]
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
| :-----------: | :---: | :---: | :-------------: | :------: |
| 0.4054 | 1.0 | 16657 | 0.2141 | 0.9216 |
| 0.3297 | 2.0 | 33314 | 0.2145 | 0.9236 |
| 0.2645 | 3.0 | 49971 | 0.2085 | 0.9288 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|