roberta-base-japanese-jsnli

This model is a fine-tuned version of nlp-waseda/roberta-base-japanese on the JSNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2039
  • Accuracy: 0.9328

How to use the model

The input text should be segmented into words by Juman++ in advance.

Simple zero-shot classification pipeline

from transformers import pipeline
from pyknp import Juman

juman = Juman()

classifier = pipeline("zero-shot-classification", model="Formzu/roberta-base-japanese-jsnli")

sequence_to_classify = " ".join([tok.midasi for tok in juman.analysis("いつか世界を見る。").mrph_list()])

candidate_labels = ['旅行', '料理', '踊り']
out = classifier(sequence_to_classify, candidate_labels, hypothesis_template="この 例 は {} です 。")
print(out)
#{'sequence': 'いつか 世界 を 見る 。', 
# 'labels': ['旅行', '踊り', '料理'], 
# 'scores': [0.8998081684112549, 0.06059670448303223, 0.03959512338042259]}

NLI use-case

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from pyknp import Juman

juman = Juman()

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_name = "Formzu/roberta-base-japanese-jsnli"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)

premise = " ".join([tok.midasi for tok in juman.analysis("いつか世界を見る。").mrph_list()])
label = '旅行'
hypothesis = f'この 例 は {label} です 。'

input = tokenizer.encode(premise, hypothesis, return_tensors='pt').to(device)
with torch.no_grad():
    logits = model(input)["logits"][0]
    probs = logits.softmax(dim=-1)
    print(probs.cpu().numpy(), logits.cpu().numpy())
#[0.82168734 0.1744363  0.00387629] [ 2.3362164   0.78641605 -3.0202653 ]

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4067 1.0 16657 0.2224 0.9201
0.3397 2.0 33314 0.2152 0.9208
0.2775 3.0 49971 0.2039 0.9328

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results