Text Generation
Safetensors
English
medical
HuatuoGPT-o1-70B / README.md
jymcc's picture
Update README.md
a10f06a verified
metadata
license: apache-2.0
datasets:
  - FreedomIntelligence/medical-o1-reasoning-SFT
  - FreedomIntelligence/medical-o1-verifiable-problem
language:
  - en
base_model:
  - meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
tags:
  - medical

HuatuoGPT-o1-70B

Introduction

HuatuoGPT-o1 is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response.

For more information, visit our GitHub repository: https://github.com/FreedomIntelligence/HuatuoGPT-o1.

Model Info

Backbone Supported Languages Link
HuatuoGPT-o1-8B LLaMA-3.1-8B English HF Link
HuatuoGPT-o1-70B LLaMA-3.1-70B English HF Link
HuatuoGPT-o1-7B Qwen2.5-7B English & Chinese HF Link
HuatuoGPT-o1-72B Qwen2.5-72B English & Chinese HF Link

Usage

You can use HuatuoGPT-o1 in the same way as Llama-3.1-70B-Instruct. You can deploy it with tools like vllm or Sglang, or perform direct inference:

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-70B",torch_dtype="auto",device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-70B")

input_text = "How to stop a cough?"
messages = [{"role": "user", "content": input_text}]

inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
), return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=2048)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

HuatuoGPT-o1 adopts a thinks-before-it-answers approach, with outputs formatted as:

## Thinking
[Reasoning process]

## Final Response
[Output]

πŸ“– Citation

@misc{chen2024huatuogpto1medicalcomplexreasoning,
      title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs}, 
      author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
      year={2024},
      eprint={2412.18925},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.18925}, 
}