CosyVoice

๐Ÿ‘‰๐Ÿป CosyVoice2 Demos ๐Ÿ‘ˆ๐Ÿป

[CosyVoice2 Paper][CosyVoice2 Studio]

๐Ÿ‘‰๐Ÿป CosyVoice Demos ๐Ÿ‘ˆ๐Ÿป

[CosyVoice Paper][CosyVoice Studio][CosyVoice Code]

For SenseVoice, visit SenseVoice repo and SenseVoice space.

Roadmap

  • 2024/12

    • CosyVoice2-0.5B model release
    • CosyVoice2-0.5B streaming inference with no quality degradation
  • 2024/07

    • Flow matching training support
    • WeTextProcessing support when ttsfrd is not avaliable
    • Fastapi server and client
  • 2024/08

    • Repetition Aware Sampling(RAS) inference for llm stability
    • Streaming inference mode support, including kv cache and sdpa for rtf optimization
  • 2024/09

    • 25hz cosyvoice base model
    • 25hz cosyvoice voice conversion model
  • TBD

    • CosyVoice2-0.5B bistream inference support
    • CosyVoice2-0.5B training and finetune recipie
    • CosyVoice-500M trained with more multi-lingual data
    • More...

Install

Clone and install

  • Clone the repo
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
# If you failed to clone submodule due to network failures, please run following command until success
cd CosyVoice
git submodule update --init --recursive
conda create -n cosyvoice python=3.10
conda activate cosyvoice
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com

# If you encounter sox compatibility issues
# ubuntu
sudo apt-get install sox libsox-dev
# centos
sudo yum install sox sox-devel

Model download

We strongly recommend that you download our pretrained CosyVoice-300M CosyVoice-300M-SFT CosyVoice-300M-Instruct model and CosyVoice-ttsfrd resource.

If you are expert in this field, and you are only interested in training your own CosyVoice model from scratch, you can skip this step.

# SDKๆจกๅž‹ไธ‹่ฝฝ
from modelscope import snapshot_download
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
# gitๆจกๅž‹ไธ‹่ฝฝ๏ผŒ่ฏท็กฎไฟๅทฒๅฎ‰่ฃ…git lfs
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd

Optionaly, you can unzip ttsfrd resouce and install ttsfrd package for better text normalization performance.

Notice that this step is not necessary. If you do not install ttsfrd package, we will use WeTextProcessing by default.

cd pretrained_models/CosyVoice-ttsfrd/
unzip resource.zip -d .
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl

Basic Usage

For zero_shot/cross_lingual inference, please use CosyVoice2-0.5B or CosyVoice-300M model. For sft inference, please use CosyVoice-300M-SFT model. For instruct inference, please use CosyVoice-300M-Instruct model. We strongly recommend using CosyVoice2-0.5B model for better streaming performance.

First, add third_party/Matcha-TTS to your PYTHONPATH.

export PYTHONPATH=third_party/Matcha-TTS
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
from cosyvoice.utils.file_utils import load_wav
import torchaudio

## cosyvoice2 usage
cosyvoice2 = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_onnx=False, load_trt=False)
# sft usage
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice2.inference_zero_shot('ๆ”ถๅˆฐๅฅฝๅ‹ไปŽ่ฟœๆ–นๅฏ„ๆฅ็š„็”Ÿๆ—ฅ็คผ็‰ฉ๏ผŒ้‚ฃไปฝๆ„ๅค–็š„ๆƒŠๅ–œไธŽๆทฑๆทฑ็š„็ฅ็ฆ่ฎฉๆˆ‘ๅฟƒไธญๅ……ๆปกไบ†็”œ่œœ็š„ๅฟซไน๏ผŒ็ฌ‘ๅฎนๅฆ‚่Šฑๅ„ฟ่ˆฌ็ปฝๆ”พใ€‚', 'ๅธŒๆœ›ไฝ ไปฅๅŽ่ƒฝๅคŸๅš็š„ๆฏ”ๆˆ‘่ฟ˜ๅฅฝๅ‘ฆใ€‚', prompt_speech_16k, stream=True)):
    torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice2.sample_rate)

## cosyvoice usage
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=True, load_onnx=False, fp16=True)
# sft usage
print(cosyvoice.list_avaliable_spks())
# change stream=True for chunk stream inference
for i, j in enumerate(cosyvoice.inference_sft('ไฝ ๅฅฝ๏ผŒๆˆ‘ๆ˜ฏ้€šไน‰็”Ÿๆˆๅผ่ฏญ้Ÿณๅคงๆจกๅž‹๏ผŒ่ฏท้—ฎๆœ‰ไป€ไนˆๅฏไปฅๅธฎๆ‚จ็š„ๅ—๏ผŸ', 'ไธญๆ–‡ๅฅณ', stream=False)):
    torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)

cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-25Hz') # or change to pretrained_models/CosyVoice-300M for 50Hz inference
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('ๆ”ถๅˆฐๅฅฝๅ‹ไปŽ่ฟœๆ–นๅฏ„ๆฅ็š„็”Ÿๆ—ฅ็คผ็‰ฉ๏ผŒ้‚ฃไปฝๆ„ๅค–็š„ๆƒŠๅ–œไธŽๆทฑๆทฑ็š„็ฅ็ฆ่ฎฉๆˆ‘ๅฟƒไธญๅ……ๆปกไบ†็”œ่œœ็š„ๅฟซไน๏ผŒ็ฌ‘ๅฎนๅฆ‚่Šฑๅ„ฟ่ˆฌ็ปฝๆ”พใ€‚', 'ๅธŒๆœ›ไฝ ไปฅๅŽ่ƒฝๅคŸๅš็š„ๆฏ”ๆˆ‘่ฟ˜ๅฅฝๅ‘ฆใ€‚', prompt_speech_16k, stream=False)):
    torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# cross_lingual usage
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
    torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# vc usage
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
source_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
    torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)

cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
for i, j in enumerate(cosyvoice.inference_instruct('ๅœจ้ขๅฏนๆŒ‘ๆˆ˜ๆ—ถ๏ผŒไป–ๅฑ•็Žฐไบ†้žๅ‡ก็š„<strong>ๅ‹‡ๆฐ”</strong>ไธŽ<strong>ๆ™บๆ…ง</strong>ใ€‚', 'ไธญๆ–‡็”ท', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
    torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)

Start web demo

You can use our web demo page to get familiar with CosyVoice quickly. We support sft/zero_shot/cross_lingual/instruct inference in web demo.

Please see the demo website for details.

# change iic/CosyVoice-300M-SFT for sft inference, or iic/CosyVoice-300M-Instruct for instruct inference
python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M

Advanced Usage

For advanced user, we have provided train and inference scripts in examples/libritts/cosyvoice/run.sh. You can get familiar with CosyVoice following this recipie.

Build for deployment

Optionally, if you want to use grpc for service deployment, you can run following steps. Otherwise, you can just ignore this step.

cd runtime/python
docker build -t cosyvoice:v1.0 .
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
# for grpc usage
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
# for fastapi usage
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice-300M && sleep infinity"
cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>

Discussion & Communication

You can directly discuss on Github Issues.

You can also scan the QR code to join our official Dingding chat group.

Acknowledge

  1. We borrowed a lot of code from FunASR.
  2. We borrowed a lot of code from FunCodec.
  3. We borrowed a lot of code from Matcha-TTS.
  4. We borrowed a lot of code from AcademiCodec.
  5. We borrowed a lot of code from WeNet.

Citations

@article{du2024cosyvoice,
  title={Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer based on supervised semantic tokens},
  author={Du, Zhihao and Chen, Qian and Zhang, Shiliang and Hu, Kai and Lu, Heng and Yang, Yexin and Hu, Hangrui and Zheng, Siqi and Gu, Yue and Ma, Ziyang and others},
  journal={arXiv preprint arXiv:2407.05407},
  year={2024}
}

Disclaimer

The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support cosyvoice models for this pipeline type.