Whisper Small ko

This model is a fine-tuned version of openai/whisper-small on the customdata dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0506
  • Cer: 1.2584
  • Wer: 0.9089

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
1.1428 1.56 100 0.8829 14.7984 14.5304
0.3434 3.12 200 0.2469 2.0625 1.7828
0.0286 4.69 300 0.0447 1.6430 1.4099
0.011 6.25 400 0.0382 1.5148 1.1070
0.0067 7.81 500 0.0409 1.4915 1.0837
0.0042 9.38 600 0.0383 1.2118 0.9438
0.0018 10.94 700 0.0396 1.3866 1.0371
0.0007 12.5 800 0.0445 1.4682 1.0604
0.0004 14.06 900 0.0386 1.2584 0.9089
0.0002 15.62 1000 0.0431 1.1769 0.8273
0.0011 17.19 1100 0.0475 1.2701 0.9205
0.0019 18.75 1200 0.0453 1.4915 1.1419
0.0012 20.31 1300 0.0437 1.2701 0.9205
0.0013 21.88 1400 0.0454 1.3284 0.9205
0.0003 23.44 1500 0.0436 1.3400 0.9438
0.0001 25.0 1600 0.0460 1.3284 0.9904
0.0001 26.56 1700 0.0464 1.3517 1.0137
0.0001 28.12 1800 0.0464 1.3400 1.0021
0.0001 29.69 1900 0.0467 1.3167 0.9788
0.0001 31.25 2000 0.0468 1.3167 0.9788
0.0001 32.81 2100 0.0470 1.3284 0.9904
0.0001 34.38 2200 0.0473 1.2934 0.9438
0.0 35.94 2300 0.0475 1.3051 0.9555
0.0 37.5 2400 0.0477 1.3051 0.9555
0.0 39.06 2500 0.0478 1.3051 0.9555
0.0 40.62 2600 0.0480 1.2934 0.9438
0.0 42.19 2700 0.0482 1.2818 0.9322
0.0 43.75 2800 0.0483 1.2818 0.9322
0.0 45.31 2900 0.0485 1.2818 0.9322
0.0 46.88 3000 0.0486 1.2584 0.9089
0.0 48.44 3100 0.0487 1.2584 0.9089
0.0 50.0 3200 0.0489 1.2584 0.9089
0.0 51.56 3300 0.0490 1.2584 0.9089
0.0 53.12 3400 0.0491 1.2584 0.9089
0.0 54.69 3500 0.0492 1.2584 0.9089
0.0 56.25 3600 0.0493 1.2584 0.9089
0.0 57.81 3700 0.0493 1.2584 0.9089
0.0 59.38 3800 0.0495 1.2584 0.9089
0.0 60.94 3900 0.0495 1.2584 0.9089
0.0 62.5 4000 0.0496 1.2584 0.9089
0.0 64.06 4100 0.0499 1.2584 0.9089
0.0 65.62 4200 0.0501 1.2584 0.9089
0.0 67.19 4300 0.0502 1.2584 0.9089
0.0 68.75 4400 0.0504 1.2584 0.9089
0.0 70.31 4500 0.0505 1.2584 0.9089
0.0 71.88 4600 0.0506 1.2584 0.9089
0.0 73.44 4700 0.0506 1.2584 0.9089
0.0 75.0 4800 0.0506 1.2584 0.9089
0.0 76.56 4900 0.0506 1.2584 0.9089
0.0 78.12 5000 0.0506 1.2584 0.9089

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.0.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
242M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for GGarri/whisper_finetuned_ver241113_2

Finetuned
(2212)
this model

Dataset used to train GGarri/whisper_finetuned_ver241113_2

Evaluation results