vit-SUPER02 / README.md
GGital's picture
Model save
835d007 verified
metadata
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - f1
model-index:
  - name: vit-SUPER02
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: F1
            type: f1
            value: 1

vit-SUPER02

This model is a fine-tuned version of google/vit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
0.0798 0.16 50 0.0393 0.9904
0.0161 0.31 100 0.0176 0.9936
0.0017 0.47 150 0.0020 0.9984
0.0012 0.62 200 0.0026 0.9985
0.0001 0.78 250 0.0001 1.0
0.0001 0.93 300 0.0001 1.0
0.0001 1.09 350 0.0001 1.0
0.0 1.24 400 0.0000 1.0
0.0 1.4 450 0.0000 1.0
0.0 1.55 500 0.0000 1.0
0.0 1.71 550 0.0000 1.0
0.0 1.86 600 0.0000 1.0
0.0 2.02 650 0.0000 1.0
0.0 2.17 700 0.0000 1.0
0.0 2.33 750 0.0000 1.0
0.0 2.48 800 0.0000 1.0
0.0 2.64 850 0.0000 1.0
0.0 2.8 900 0.0000 1.0
0.0 2.95 950 0.0000 1.0
0.0 3.11 1000 0.0000 1.0
0.0 3.26 1050 0.0000 1.0
0.0 3.42 1100 0.0000 1.0
0.0 3.57 1150 0.0000 1.0
0.0 3.73 1200 0.0000 1.0
0.0 3.88 1250 0.0000 1.0
0.0 4.04 1300 0.0000 1.0
0.0 4.19 1350 0.0000 1.0
0.0 4.35 1400 0.0000 1.0
0.0 4.5 1450 0.0000 1.0
0.0 4.66 1500 0.0000 1.0
0.0 4.81 1550 0.0000 1.0
0.0 4.97 1600 0.0000 1.0
0.0 5.12 1650 0.0000 1.0
0.0 5.28 1700 0.0000 1.0
0.0 5.43 1750 0.0000 1.0
0.0 5.59 1800 0.0000 1.0
0.0 5.75 1850 0.0000 1.0
0.0 5.9 1900 0.0000 1.0
0.0 6.06 1950 0.0000 1.0
0.0 6.21 2000 0.0000 1.0
0.0 6.37 2050 0.0000 1.0
0.0 6.52 2100 0.0000 1.0
0.0 6.68 2150 0.0000 1.0
0.0 6.83 2200 0.0000 1.0
0.0 6.99 2250 0.0000 1.0
0.0 7.14 2300 0.0000 1.0
0.0 7.3 2350 0.0000 1.0
0.0 7.45 2400 0.0000 1.0
0.0 7.61 2450 0.0000 1.0
0.0 7.76 2500 0.0000 1.0
0.0 7.92 2550 0.0000 1.0
0.0 8.07 2600 0.0000 1.0
0.0 8.23 2650 0.0000 1.0
0.0 8.39 2700 0.0000 1.0
0.0 8.54 2750 0.0000 1.0
0.0 8.7 2800 0.0000 1.0
0.0 8.85 2850 0.0000 1.0
0.0 9.01 2900 0.0000 1.0
0.0 9.16 2950 0.0000 1.0
0.0 9.32 3000 0.0000 1.0
0.0 9.47 3050 0.0000 1.0
0.0 9.63 3100 0.0000 1.0
0.0 9.78 3150 0.0000 1.0
0.0 9.94 3200 0.0000 1.0

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1