Agri-flow Classification Model

This model classifies grievances into five distinct buckets:

  • Label 0: agricultural_scheme
  • Label 1: agriculture
  • Label 2: pest
  • Label 3: seed
  • Label 4: weather
  • Label 5: price
  • Label 6: non_agri

Description of the Buckets

  1. agricultural_scheme: The farmer query is about schemes in Odisha

  2. agriculture: General agri queries

  3. pest: The farmer query is about pests

  4. seed: The farmer query is about seed varieties

  5. weather : The farmer query is asking about the weather for a district /place e.g. : 'What's the weather forecast for Sundargarh?'

  6. price : The farmer query is asking about the price of some crop e.g. 'Price for paddy'

  7. non_agri : The farmer query is just some salutation or unrelated to agri

Training Metrics

The following training metrics were observed over 10 epochs: Epoch 1/1000 - Loss: 0.8210 - Accuracy: 0.7443 - F1 Score: 0.7360 Validation Accuracy: 0.9037 Validation F1 Score: 0.9022 Epoch 2/1000 - Loss: 0.2868 - Accuracy: 0.9199 - F1 Score: 0.9197 Validation Accuracy: 0.9241 Validation F1 Score: 0.9236 Epoch 3/1000 - Loss: 0.1620 - Accuracy: 0.9536 - F1 Score: 0.9534 Validation Accuracy: 0.9408 Validation F1 Score: 0.9407 Epoch 4/1000 - Loss: 0.0975 - Accuracy: 0.9698 - F1 Score: 0.9698 Validation Accuracy: 0.9457 Validation F1 Score: 0.9461 Epoch 5/1000 - Loss: 0.0722 - Accuracy: 0.9777 - F1 Score: 0.9777 Validation Accuracy: 0.9518 Validation F1 Score: 0.9520 Epoch 6/1000 - Loss: 0.0570 - Accuracy: 0.9801 - F1 Score: 0.9801 Validation Accuracy: 0.9574 Validation F1 Score: 0.9573 Epoch 7/1000 - Loss: 0.0426 - Accuracy: 0.9838 - F1 Score: 0.9838 Validation Accuracy: 0.9601 Validation F1 Score: 0.9601 Epoch 8/1000 - Loss: 0.0403 - Accuracy: 0.9850 - F1 Score: 0.9850 Validation Accuracy: 0.9646 Validation F1 Score: 0.9646 Epoch 9/1000 - Loss: 0.0340 - Accuracy: 0.9853 - F1 Score: 0.9853 Validation Accuracy: 0.9623 Validation F1 Score: 0.9624 Epoch 10/1000 - Loss: 0.0307 - Accuracy: 0.9857 - F1 Score: 0.9857 Validation Accuracy: 0.9640 Validation F1 Score: 0.9640 Epoch 11/1000 - Loss: 0.0297 - Accuracy: 0.9873 - F1 Score: 0.9873 Validation Accuracy: 0.9618 Validation F1 Score: 0.9618 Epoch 12/1000 - Loss: 0.0279 - Accuracy: 0.9867 - F1 Score: 0.9867 Validation Accuracy: 0.9607 Validation F1 Score: 0.9607

Downloads last month
4
Safetensors
Model size
24.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.