controlnet-channels / README.md
Gerold Meisinger
eval, readme
f6fba87
---
license: cc-by-nc-sa-4.0
---
**Restore missing RGB channels**
Restore a missing channel of a RGB image by using ControlNet to guide image generation of Stable Diffusion to infer missing channel from the other two channels.
* See accompanying discussion at [github.com - Channels RGB](https://github.com/lllyasviel/ControlNet/discussions/567) with detailed report and evaluations.
* To restore images with missing channels you can use [this space](https://huggingface.co/spaces/GeroldMeisinger/channels).
* For evaluation images see the corresponding .zip's at "files".
* To run your own evaluations you can use [this script at gitlab.com](https://gitlab.com/-/snippets/3602096).
# Training
```
accelerate launch train_controlnet.py \
--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \
--train_batch_size=4 \
--gradient_accumulation_steps=8 \
--proportion_empty_prompts=0.5
--mixed_precision="fp16" \
--learning_rate=1e-5 \
--enable_xformers_memory_efficient_attention \
--use_8bit_adam \
--set_grads_to_none \
--seed=0 \
--num_train_epochs=2
```
# Image dataset
* laion2B-en aesthetics>=6.5 dataset
* --min_image_size 512 --max_aspect_ratio 2 --resize_mode="center_crop" --image_size 512
* Cleaned with `fastdup` default settings
* Data augmented with right-left flipped images
* Resulting in 214244 images
* Set whole channel to 0 by alternating between R-G-B channels