|
--- |
|
language: |
|
- multilingual |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- loss:MatryoshkaLoss |
|
base_model: Ghani-25/LF_enrich_sim |
|
widget: |
|
- source_sentence: CTO and co-Founder |
|
sentences: |
|
- Responsable surpervision des départements |
|
- Senior sales executive |
|
- >- |
|
Injection Operations Supervisor - Industrial Efficiency - Systems & |
|
Equipment |
|
- source_sentence: Commercial Account Executive |
|
sentences: |
|
- Automation Electrician |
|
- Love Coach Extra |
|
- Psychologue Clinicienne (Croix Rouge Française) Hébergements et ESAT |
|
- source_sentence: Chargée d'etudes actuarielles IFRS17 |
|
sentences: |
|
- Visuel Merchandiser Shop In Shop |
|
- VIP Lounge Hostess |
|
- Directeur Adjoint des opérations |
|
- source_sentence: Cheffe de projet emailing |
|
sentences: |
|
- Experte Territoriale |
|
- Responsable Clientele / Commerciale et Communication / |
|
- STRATEGIC CONSULTANT - LIVE BUSINESS CASE |
|
- source_sentence: 'Summer Job: Export Manager' |
|
sentences: |
|
- Clinical Project Leader |
|
- Member and Maghreb Representative |
|
- Responsable Export Afrique Amériques |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: Our original base similarity Matryoshka |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9696182810336916 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9472439476744547 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9692898932305203 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9466297549051846 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9662306280132803 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9407689506959847 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.960638838395904 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9314825034513964 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9463950305830967 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9100801085031441 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# Our original base similarity Matryoshka |
|
|
|
This is a [sentence-transformers] model finetuned from [Ghani-25/LF_enrich_sim](https://huggingface.co/Ghani-25/LF_enrich_sim) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Ghani-25/LF_enrich_sim](https://huggingface.co/Ghani-25/LF_enrich_sim) <!-- at revision fb09bbe3ab4baafa2101c33989bf2ed8ffddf5cc --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- json |
|
- **Language:** multilingual |
|
- **License:** apache-2.0 |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Ghani-25/LF-enrich-sim-matryoshka-64") |
|
# Run inference |
|
sentences = [ |
|
'Summer Job: Export Manager', |
|
'Responsable Export Afrique Amériquess |
|
'Clinical Project Leader', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
|
|
# Extraction de la diagonale pour obtenir les similarités correspondantes |
|
similarities_diagonal = similarities.diag().cpu().numpy() |
|
print(similarities_diagonal) |
|
# [0.896542] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |
|
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| |
|
| pearson_cosine | 0.9696 | 0.9693 | 0.9662 | 0.9606 | 0.9464 | |
|
| **spearman_cosine** | **0.9472** | **0.9466** | **0.9408** | **0.9315** | **0.9101** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### json |
|
|
|
* Dataset: json |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 10.22 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.98 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: -0.05</li><li>mean: 0.37</li><li>max: 0.98</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:--------------------------------------------------------|:-----------------------------------------------|:------------------------| |
|
| <code>Contributive filmer</code> | <code>Doctorant contractuel (2016-2019)</code> | <code>0.20986526</code> | |
|
| <code>Responsable Développement et Communication</code> | <code>Bilingual Business Assistant</code> | <code>0.3238712</code> | |
|
| <code>Law Trainee</code> | <code>Sales Director contract manager</code> | <code>0.24983984</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CosineSimilarityLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
|
|
#### All Hyperparameters |
|
Contact the author. |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_768_spearman_cosine | dim_512_spearman_cosine | dim_256_spearman_cosine | dim_128_spearman_cosine | dim_64_spearman_cosine | |
|
|:----------:|:-------:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:| |
|
| 0.1624 | 10 | 0.0669 | - | - | - | - | - | |
|
| 0.3249 | 20 | 0.0563 | - | - | - | - | - | |
|
| 0.4873 | 30 | 0.0496 | - | - | - | - | - | |
|
| 0.6497 | 40 | 0.0456 | - | - | - | - | - | |
|
| 0.8122 | 50 | 0.0418 | - | - | - | - | - | |
|
| 0.9746 | 60 | 0.0407 | - | - | - | - | - | |
|
| 0.9909 | 61 | - | 0.9223 | 0.9199 | 0.9087 | 0.8920 | 0.8586 | |
|
| 1.1371 | 70 | 0.0326 | - | - | - | - | - | |
|
| 1.2995 | 80 | 0.0312 | - | - | - | - | - | |
|
| 1.4619 | 90 | 0.0303 | - | - | - | - | - | |
|
| 1.6244 | 100 | 0.03 | - | - | - | - | - | |
|
| 1.7868 | 110 | 0.0291 | - | - | - | - | - | |
|
| 1.9492 | 120 | 0.0301 | - | - | - | - | - | |
|
| 1.9980 | 123 | - | 0.9393 | 0.9382 | 0.9304 | 0.9191 | 0.8946 | |
|
| 2.1117 | 130 | 0.0257 | - | - | - | - | - | |
|
| 2.2741 | 140 | 0.0243 | - | - | - | - | - | |
|
| 2.4365 | 150 | 0.0246 | - | - | - | - | - | |
|
| 2.5990 | 160 | 0.0235 | - | - | - | - | - | |
|
| 2.7614 | 170 | 0.024 | - | - | - | - | - | |
|
| 2.9239 | 180 | 0.023 | - | - | - | - | - | |
|
| 2.9888 | 184 | - | 0.9464 | 0.9457 | 0.9396 | 0.9301 | 0.9083 | |
|
| 3.0863 | 190 | 0.0222 | - | - | - | - | - | |
|
| 3.2487 | 200 | 0.022 | - | - | - | - | - | |
|
| 3.4112 | 210 | 0.022 | - | - | - | - | - | |
|
| 3.5736 | 220 | 0.0226 | - | - | - | - | - | |
|
| 3.7360 | 230 | 0.021 | - | - | - | - | - | |
|
| 3.8985 | 240 | 0.0224 | - | - | - | - | - | |
|
| **3.9635** | **244** | **-** | **0.9472** | **0.9466** | **0.9408** | **0.9315** | **0.9101** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |