distil-ast-audioset-finetuned-gtzan

This model is a fine-tuned version of bookbot/distil-ast-audioset on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3866
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
0.7945 1.0 113 0.76 0.8481
0.4836 2.0 226 0.79 0.5647
0.2434 3.0 339 0.8 0.6345
0.2721 4.0 452 0.91 0.3684
0.0459 5.0 565 0.9 0.3387
0.0485 6.0 678 0.87 0.3720
0.0337 7.0 791 0.9 0.3439
0.0206 8.0 904 0.89 0.3630
0.1043 9.0 1017 0.89 0.3682
0.0146 10.0 1130 0.89 0.3552
0.0109 11.0 1243 0.4141 0.87
0.001 12.0 1356 0.4266 0.88
0.0006 13.0 1469 0.4001 0.91
0.0006 14.0 1582 0.3884 0.9
0.0008 15.0 1695 0.3881 0.91
0.0005 16.0 1808 0.3796 0.9
0.0005 17.0 1921 0.3865 0.9
0.0005 18.0 2034 0.3861 0.9
0.0003 19.0 2147 0.3879 0.9
0.0005 20.0 2260 0.3866 0.9

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train GillesMeyhi/distil-ast-audioset-finetuned-gtzan