xls-r-amharic / README.md
Gizachew's picture
End of training
49a32cd verified
---
license: apache-2.0
base_model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xls-r-amharic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/hallo23/huggingface/runs/5pgjd6az)
# xls-r-amharic
This model is a fine-tuned version of [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0901
- Accuracy: 0.9818
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.2847 | 2.0202 | 500 | 0.2479 | 0.9212 |
| 0.1138 | 4.0404 | 1000 | 0.2063 | 0.9434 |
| 0.0614 | 6.0606 | 1500 | 0.1415 | 0.9657 |
| 0.0349 | 8.0808 | 2000 | 0.1383 | 0.9737 |
| 0.0143 | 10.1010 | 2500 | 0.0901 | 0.9818 |
| 0.0178 | 12.1212 | 3000 | 0.1188 | 0.9778 |
| 0.0222 | 14.1414 | 3500 | 0.1237 | 0.9778 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.1.2
- Datasets 2.19.1.dev0
- Tokenizers 0.19.1