microsoft-deberta-v3-large_ner_conll2003

This model is a fine-tuned version of microsoft/deberta-v3-large on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0293
  • Precision: 0.9667
  • Recall: 0.9724
  • F1: 0.9695
  • Accuracy: 0.9945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0986 1.0 878 0.0323 0.9453 0.9596 0.9524 0.9921
0.0212 2.0 1756 0.0270 0.9571 0.9675 0.9623 0.9932
0.009 3.0 2634 0.0280 0.9638 0.9714 0.9676 0.9940
0.0035 4.0 3512 0.0290 0.9657 0.9712 0.9685 0.9943
0.0022 5.0 4390 0.0293 0.9667 0.9724 0.9695 0.9945

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
775
Safetensors
Model size
434M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gladiator/microsoft-deberta-v3-large_ner_conll2003

Finetunes
2 models

Dataset used to train Gladiator/microsoft-deberta-v3-large_ner_conll2003

Evaluation results