SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • ' M/S. JOSEPH SUNA DATABI Tankipaa.MIRAKU SAMBALPUR.768Q16 DMB Nb N.9861345883 Deals Which :Altypes of ChickenGNALOR REGUMING) DISALI WINNALIZED CHOCO SUSPECIALIZE TWICENCHE SHRANGKANG POWER LATHOCO TWICENKO: JERYUNG CHOCO TWICENKO: JERYUNG HZYGANGKAN DIFF-SAWALAPUKU SAMBALPUR.76801GHOLIZEG DATE DATE DATE: 01/01/01/01/01/01/01/01/01/01/01/01/01/01/01/01/01 PAN No.: PPODATE 01/01/01/01/01/01/01/01/01/01/01 DATE OPSE HANDUPPOWER 30.12221 1,945.00 SUSPENGGANGURG.GUSTAGUR GUSTAGANGKANGURGUSTAGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTGUTG'
  • ' GST INVOLICE ORIGINAL FOR KEGINGLI WOUCE BREGRAMING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPINGLIPPING SUSHIPPING SUSHIPPINGLIPPING SUSHIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPINGLIPPING SUSHIPPING SUSHIPPINGLIPPING SUSHIPPING SUSHIPPINGLIPPING SUSHIPPING SUSHIPPINGLIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHIPPING SUSHI'
  • ' TAX INVOICE ORIGINAL FOR AQUALIZE SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO SUSHIKO '
1
  • ' UNDALCO INDUSTRIES LTB. HIRAKUD POWER ASH WPTCH BRIOGE TIMOL CATE BRIOUS DATE SUSCEE SUSCE 1 SUSCE MSCED SUSCEE SUSCE 1 SUSCE MICHI CHOCO KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KESE KE'
  • ' UNDALCO INDUSTRIES LTB. HIR A KD POWER ASH WEICH BRIOGE 16.36.36m2 AGE IMPL CAST SUSIC :RING LETS SUSIC SUSIC SUSIC SUSIC SUSIC SUSIC SUSCCE MSCHO 13.45 1.36.36 6.36 SUSPICY TEMPLE 14.50.13.502 1.00 0.00 BREAT TRIPSE TO WBLE 13.35.5cs 1.00.00 0.00 BREATTY TRIPSE 13.50 1.00.00.00.00 0.00 BREATTY TRIPSE 13.50.50 1.00.00.00 0.00 BREATTY TRIPSE 13.50.50 1.00.00.00 0.00 BREATTY TRIPSE 13.50.50 1.00.00 0.00 BREYA TEMPLE 13.50 1.00.00 0.00 BREYA TEMPLE ITEMBLE 1.00 0.00 BREYANG TEMPLE ITEMBLE 1.00.00 0.00 BREYANG TEMPLE ITEMBLE 1.00 0.00 BREATTYPE 3.00.00 0.00 BREATSUPER 13.35.5cs 1.00 5.940 0.00 BRETYPETROPICPICPICPICYE 13.50 0.00 BREATTYPE 3.00.00 0.00 BREATPICYEPIC ITEMBLE 1.00 0.00 BREATSUPER 13.50 5.940.00 0.00 13.50 31.00 BK.00'
  • ' ORI ZHDLE TOMI O JAPAN SUSHIKA JERYA CHARGE @SAKASAKASAKA SPICKING SUSHI JER @SAKASAKASAKASAKASAKA SPICKING SUSHI JER @SAKASAKASAKASAKASAKA SPICKING SUSHI JER @SAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKASAKAStakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakattakat'
0
  • ' HANDALCO 이미지ES LIMITED SUNDAYGHOCO SUSHIZEH CINCEHANGKAGHOCO SUSHIZEHANGKAGHOUSHIZEHANGKAGHOUSHIZEHANGKAGHOUSHIZEHANGKAGHOUSHIZEHANGKAGHOUSHIZEHANGKANG PURCHASE ORDER WANTE CHOCO CAKE CONSULATANCE PYI LOTHO NUMPIC UPICK CHOCO CHOCO CHOCOCO SUSHIZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHERNt.Minitie HGHOCEHINEN.Minitie HGUMAGHONN.Minitie HUMAGHONN 436.0 OxMini WHEN HUMAGHUNG SUSHIZEHITEGHOUSHILIZEHENCE COTTING THOGEHGHOCO SUSHIZEHITEGHTGHOLIZEHGHOLIZEHGHOLIZEHGHOLIZEHGPICYGLIZEHGHTG SOUTING SUSHIZEHITEGHTGHOLIZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEHZEH'
  • ' WINGllaco Industries Limited LIKING PICCE CHOCOLOGY VICE LIKING SUSHIBILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILILI'
  • ' HINDALCO INDUSTRIES LIMITED GSTING&NAACHI201 WBABUPOWER HEROGUSTAMPURGANGKANCE CHOCOLOGALINGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGANGGA'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/setfit_zeon")
# Run inference
preds = model("<s_cord-v2><s_menu><s_nm> HINALCO INDUSTRIES LTB. HIRAKUR</s_nm><s_unitprice> 1344</s_unitprice><s_cnt> 1</s_cnt><s_price> 4,436</s_price><sep/><s_nm> ASTRICA BRIOC</s_nm><s_unitprice> 12.082</s_unitprice><s_cnt> 1</s_cnt><s_discountprice> 12.027</s_discountprice><s_price> SUSPICY TEMPURA HIRAKUR</s_nm><s_unitprice> 12.027.00.0020</s_discountprice><s_price> PAK SUSHI HIRAKURURUR</s_nm><s_unitprice> 12.027.00.0020</s_unitprice><s_cnt> 1</s_cnt><s_discountprice> 12.027</s_discountprice><s_price> 4,436</s_price><sep/><s_nm> SUSHI SALT CALLOCALI</s_nm><s_unitprice> 12.027.0020</s_unitprice><s_cnt> 1</s_cnt><s_discountprice> 1,003</s_discountprice><s_price> 1,00</s_price></s_menu><s_sub_total><s_subtotal_price> 3,003</s_subtotal_price><s_discount_price> 3,003<sep/> 0.00</s_discount_price></s_sub_total><s_total><s_total_price> 3,00</s_total_price><s_cashprice> 3,00</s_cashprice><s_changeprice> 1,00</s_changeprice></s_total>")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 107.8041 763
Label Training Sample Count
0 47
1 51
2 50

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0022 1 0.3004 -
0.1094 50 0.2457 -
0.2188 100 0.1464 -
0.3282 150 0.0079 -
0.4376 200 0.0028 -
0.5470 250 0.0027 -
0.6565 300 0.0017 -
0.7659 350 0.0014 -
0.8753 400 0.0015 -
0.9847 450 0.0011 -
1.0941 500 0.001 -
1.2035 550 0.0011 -
1.3129 600 0.001 -
1.4223 650 0.0011 -
1.5317 700 0.0011 -
1.6411 750 0.0009 -
1.7505 800 0.0008 -
1.8600 850 0.001 -
1.9694 900 0.0009 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.2
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
22
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gopal2002/setfit_zeon

Finetuned
(137)
this model

Evaluation results