metadata
language:
- ka
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small ka - Sakartvelo
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ka
split: test
args: 'config: ka, split: test'
metrics:
- name: Wer
type: wer
value: 43.1727984554328
Whisper Small ka - Sakartvelo
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1455
- Wer: 43.1728
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0494 | 2.91 | 1000 | 0.0878 | 47.1629 |
0.0056 | 5.81 | 2000 | 0.1159 | 44.6047 |
0.0002 | 8.72 | 3000 | 0.1364 | 43.4946 |
0.0001 | 11.63 | 4000 | 0.1455 | 43.1728 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0