wietsedv's picture
fix link
574c7cf
---
language: nl
tags:
- adaption
- recycled
- gpt2-medium
pipeline_tag: text-generation
---
# GPT-2 recycled for Dutch (medium, adapted lexical embeddings)
[Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) •
[Malvina Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475)
## Model description
This model is based on the medium OpenAI GPT-2 ([`gpt2-medium`](https://huggingface.co/gpt2-medium)) model.
The Transformer layer weights in this model are identical to the original English, model but the lexical layer has been retrained for a Dutch vocabulary.
For details, check out our paper on [arXiv](https://arxiv.org/abs/2012.05628) and the code on [Github](https://github.com/wietsedv/gpt2-recycle).
## Related models
### Dutch
- [`gpt2-small-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-small-dutch-embeddings): Small model size with only retrained lexical embeddings.
- [`gpt2-small-dutch`](https://huggingface.co/GroNLP/gpt2-small-dutch): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**)
- [`gpt2-medium-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings): Medium model size with only retrained lexical embeddings.
### Italian
- [`gpt2-small-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-small-italian-embeddings): Small model size with only retrained lexical embeddings.
- [`gpt2-small-italian`](https://huggingface.co/GroNLP/gpt2-small-italian): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**)
- [`gpt2-medium-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-italian-embeddings): Medium model size with only retrained lexical embeddings.
## How to use
```python
from transformers import pipeline
pipe = pipeline("text-generation", model="GroNLP/gpt2-medium-dutch-embeddings")
```
```python
from transformers import AutoTokenizer, AutoModel, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained("GroNLP/gpt2-medium-dutch-embeddings")
model = AutoModel.from_pretrained("GroNLP/gpt2-medium-dutch-embeddings") # PyTorch
model = TFAutoModel.from_pretrained("GroNLP/gpt2-medium-dutch-embeddings") # Tensorflow
```
## BibTeX entry
```bibtex
@misc{devries2020good,
title={As good as new. How to successfully recycle English GPT-2 to make models for other languages},
author={Wietse de Vries and Malvina Nissim},
year={2020},
eprint={2012.05628},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```