|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-base-multilingual-uncased-finetuned-ner-lenerBR |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
config: lener_br |
|
split: validation |
|
args: lener_br |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8678256070640177 |
|
- name: Recall |
|
type: recall |
|
value: 0.8758006126427179 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8717948717948718 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9706569722150091 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-multilingual-uncased-finetuned-ner-lenerBR |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the lener_br dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1568 |
|
- Precision: 0.8678 |
|
- Recall: 0.8758 |
|
- F1: 0.8718 |
|
- Accuracy: 0.9707 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 245 | 0.1819 | 0.7691 | 0.8118 | 0.7899 | 0.9585 | |
|
| No log | 2.0 | 490 | 0.1487 | 0.7383 | 0.8098 | 0.7724 | 0.9586 | |
|
| 0.1325 | 3.0 | 735 | 0.1532 | 0.8662 | 0.8777 | 0.8719 | 0.9683 | |
|
| 0.1325 | 4.0 | 980 | 0.1470 | 0.8770 | 0.8800 | 0.8785 | 0.9698 | |
|
| 0.0233 | 5.0 | 1225 | 0.1155 | 0.8493 | 0.8839 | 0.8663 | 0.9750 | |
|
| 0.0233 | 6.0 | 1470 | 0.1727 | 0.8874 | 0.8822 | 0.8848 | 0.9701 | |
|
| 0.0126 | 7.0 | 1715 | 0.1698 | 0.8890 | 0.8853 | 0.8871 | 0.9710 | |
|
| 0.0126 | 8.0 | 1960 | 0.1687 | 0.8651 | 0.8783 | 0.8716 | 0.9702 | |
|
| 0.0076 | 9.0 | 2205 | 0.1593 | 0.8077 | 0.8797 | 0.8422 | 0.9668 | |
|
| 0.0076 | 10.0 | 2450 | 0.1568 | 0.8678 | 0.8758 | 0.8718 | 0.9707 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|