distilroberta-base-finetuned-ner-lenerBr
This model is a fine-tuned version of distilbert/distilroberta-base on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: 0.1550
- Precision: 0.8013
- Recall: 0.8430
- F1: 0.8216
- Accuracy: 0.9686
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 490 | 0.1750 | 0.7347 | 0.6581 | 0.6942 | 0.9465 |
0.2808 | 2.0 | 980 | 0.1642 | 0.6954 | 0.7598 | 0.7262 | 0.9538 |
0.093 | 3.0 | 1470 | 0.1849 | 0.6708 | 0.7992 | 0.7294 | 0.9510 |
0.0557 | 4.0 | 1960 | 0.1403 | 0.7807 | 0.8345 | 0.8067 | 0.9668 |
0.0366 | 5.0 | 2450 | 0.1560 | 0.7775 | 0.8466 | 0.8106 | 0.9626 |
0.027 | 6.0 | 2940 | 0.1612 | 0.7342 | 0.8239 | 0.7764 | 0.9621 |
0.0204 | 7.0 | 3430 | 0.1632 | 0.7625 | 0.8356 | 0.7974 | 0.9644 |
0.015 | 8.0 | 3920 | 0.1748 | 0.7375 | 0.8442 | 0.7873 | 0.9615 |
0.0135 | 9.0 | 4410 | 0.1547 | 0.7930 | 0.8446 | 0.8180 | 0.9685 |
0.0101 | 10.0 | 4900 | 0.1550 | 0.8013 | 0.8430 | 0.8216 | 0.9686 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for GuiTap/distilroberta-base-finetuned-ner-lenerBr
Base model
distilbert/distilroberta-baseDataset used to train GuiTap/distilroberta-base-finetuned-ner-lenerBr
Evaluation results
- Precision on lener_brvalidation set self-reported0.801
- Recall on lener_brvalidation set self-reported0.843
- F1 on lener_brvalidation set self-reported0.822
- Accuracy on lener_brvalidation set self-reported0.969