GuiTap's picture
End of training
76a126d verified
metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-large-finetuned-ner-harem
    results: []

xlm-roberta-large-finetuned-ner-harem

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1622
  • Precision: 0.8344
  • Recall: 0.8412
  • F1: 0.8378
  • Accuracy: 0.9745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9938 140 0.1806 0.6310 0.6557 0.6431 0.9533
No log 1.9947 281 0.1334 0.7314 0.7691 0.7497 0.9642
No log 2.9956 422 0.1332 0.7751 0.8103 0.7923 0.9712
0.2049 3.9965 563 0.1133 0.7948 0.8144 0.8045 0.9706
0.2049 4.9973 704 0.1215 0.814 0.8392 0.8264 0.9748
0.2049 5.9982 845 0.1274 0.8097 0.8247 0.8172 0.9726
0.2049 6.9991 986 0.1725 0.8079 0.8062 0.8070 0.9687
0.0307 8.0 1127 0.1647 0.8396 0.8309 0.8352 0.9736
0.0307 8.9938 1267 0.1678 0.8420 0.8351 0.8385 0.9726
0.0307 9.9379 1400 0.1622 0.8344 0.8412 0.8378 0.9745

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1