|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-E30_sp |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-E30_sp |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4665 |
|
- Cer: 30.6287 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 32.3037 | 0.1289 | 200 | 5.0215 | 100.0 | |
|
| 4.9642 | 0.2579 | 400 | 4.6861 | 100.0 | |
|
| 4.8422 | 0.3868 | 600 | 4.7308 | 100.0 | |
|
| 4.7474 | 0.5158 | 800 | 4.6660 | 97.7203 | |
|
| 4.6975 | 0.6447 | 1000 | 4.5628 | 97.9436 | |
|
| 4.6688 | 0.7737 | 1200 | 4.5418 | 97.7262 | |
|
| 4.6225 | 0.9026 | 1400 | 4.5220 | 97.9377 | |
|
| 4.5627 | 1.0316 | 1600 | 4.5568 | 97.2092 | |
|
| 4.5233 | 1.1605 | 1800 | 4.4908 | 96.2926 | |
|
| 4.4088 | 1.2895 | 2000 | 4.4416 | 95.4465 | |
|
| 4.0188 | 1.4184 | 2200 | 3.7750 | 77.5206 | |
|
| 3.2832 | 1.5474 | 2400 | 3.1100 | 61.0576 | |
|
| 2.7716 | 1.6763 | 2600 | 2.6530 | 51.1222 | |
|
| 2.4346 | 1.8053 | 2800 | 2.3400 | 46.3220 | |
|
| 2.1907 | 1.9342 | 3000 | 2.0907 | 40.3290 | |
|
| 2.0173 | 2.0632 | 3200 | 1.9195 | 39.0541 | |
|
| 1.8574 | 2.1921 | 3400 | 1.8219 | 37.3796 | |
|
| 1.6992 | 2.3211 | 3600 | 1.7006 | 34.4947 | |
|
| 1.623 | 2.4500 | 3800 | 1.6380 | 34.0129 | |
|
| 1.5586 | 2.5790 | 4000 | 1.5646 | 32.3913 | |
|
| 1.5001 | 2.7079 | 4200 | 1.4950 | 31.5570 | |
|
| 1.4357 | 2.8369 | 4400 | 1.4842 | 31.3337 | |
|
| 1.3935 | 2.9658 | 4600 | 1.4665 | 30.6287 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|