fine-tuning-dolphin-mistral-with-webglm-qa-with-lora_1
This model is a fine-tuned version of cognitivecomputations/dolphin-2.8-mistral-7b-v02 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2999
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 60
- training_steps: 700
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7558 | 0.16 | 10 | 1.4842 |
1.4966 | 0.32 | 20 | 1.3367 |
1.2328 | 0.48 | 30 | 1.1282 |
0.9873 | 0.64 | 40 | 1.0817 |
0.9661 | 0.8 | 50 | 0.9967 |
0.8808 | 0.96 | 60 | 0.8844 |
0.7455 | 1.13 | 70 | 0.7337 |
0.6018 | 1.29 | 80 | 0.6164 |
0.4899 | 1.45 | 90 | 0.5440 |
0.4402 | 1.61 | 100 | 0.4971 |
0.4154 | 1.77 | 110 | 0.4555 |
0.4025 | 1.93 | 120 | 0.4238 |
0.3992 | 2.09 | 130 | 0.4007 |
0.3585 | 2.25 | 140 | 0.3862 |
0.3369 | 2.41 | 150 | 0.3666 |
0.3328 | 2.57 | 160 | 0.3537 |
0.3216 | 2.73 | 170 | 0.3423 |
0.2859 | 2.89 | 180 | 0.3303 |
0.2967 | 3.05 | 190 | 0.3211 |
0.2933 | 3.22 | 200 | 0.3114 |
0.2716 | 3.38 | 210 | 0.3097 |
0.255 | 3.54 | 220 | 0.3053 |
0.2731 | 3.7 | 230 | 0.2990 |
0.2729 | 3.86 | 240 | 0.2972 |
0.2701 | 4.02 | 250 | 0.3030 |
0.2558 | 4.18 | 260 | 0.3042 |
0.2612 | 4.34 | 270 | 0.3301 |
0.3048 | 4.5 | 280 | 0.4564 |
0.5437 | 4.66 | 290 | 0.7938 |
1.5888 | 4.82 | 300 | 1.5418 |
0.6588 | 4.98 | 310 | 0.4630 |
0.5345 | 5.14 | 320 | 0.9088 |
1.1475 | 5.31 | 330 | 1.6381 |
1.6442 | 5.47 | 340 | 2.0495 |
2.2517 | 5.63 | 350 | 1.7558 |
0.9492 | 5.79 | 360 | 0.5187 |
0.3727 | 5.95 | 370 | 0.3763 |
0.3139 | 6.11 | 380 | 0.3376 |
0.2896 | 6.27 | 390 | 0.3195 |
0.283 | 6.43 | 400 | 0.3106 |
0.2646 | 6.59 | 410 | 0.3105 |
0.2674 | 6.75 | 420 | 0.3256 |
0.3482 | 6.91 | 430 | 0.4016 |
0.4193 | 7.07 | 440 | 0.6300 |
0.7397 | 7.23 | 450 | 1.0617 |
1.1954 | 7.4 | 460 | 1.6157 |
1.6177 | 7.56 | 470 | 1.8019 |
1.2996 | 7.72 | 480 | 0.9151 |
0.6605 | 7.88 | 490 | 0.5433 |
0.416 | 8.04 | 500 | 0.4012 |
0.3412 | 8.2 | 510 | 0.3685 |
0.3322 | 8.36 | 520 | 0.3928 |
0.3516 | 8.52 | 530 | 0.3641 |
0.3406 | 8.68 | 540 | 0.4061 |
0.3772 | 8.84 | 550 | 0.4145 |
0.3695 | 9.0 | 560 | 0.5453 |
0.5824 | 9.16 | 570 | 0.7332 |
0.5139 | 9.32 | 580 | 0.4839 |
0.3798 | 9.49 | 590 | 0.3758 |
0.319 | 9.65 | 600 | 0.3438 |
0.3082 | 9.81 | 610 | 0.3301 |
0.3017 | 9.97 | 620 | 0.3225 |
0.2862 | 10.13 | 630 | 0.3156 |
0.2586 | 10.29 | 640 | 0.3109 |
0.2878 | 10.45 | 650 | 0.3082 |
0.2766 | 10.61 | 660 | 0.3056 |
0.2834 | 10.77 | 670 | 0.3042 |
0.2513 | 10.93 | 680 | 0.3020 |
0.2762 | 11.09 | 690 | 0.3007 |
0.28 | 11.25 | 700 | 0.2999 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Model tree for Gunslinger3D/fine-tuning-dolphin-mistral-with-webglm-qa-with-lora_1
Base model
mistral-community/Mistral-7B-v0.2