BitLlama2-jp-127M-optim-2
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.3899
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0024
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.8239 | 0.07 | 200 | 4.8920 |
4.5399 | 0.15 | 400 | 4.3733 |
4.2276 | 0.22 | 600 | 4.1616 |
4.0264 | 0.29 | 800 | 3.9917 |
3.8798 | 0.37 | 1000 | 3.8848 |
3.78 | 0.44 | 1200 | 3.7981 |
3.703 | 0.52 | 1400 | 3.7259 |
3.6279 | 0.59 | 1600 | 3.6482 |
3.5665 | 0.66 | 1800 | 3.5918 |
3.5093 | 0.74 | 2000 | 3.5408 |
3.4519 | 0.81 | 2200 | 3.4849 |
3.3962 | 0.88 | 2400 | 3.4375 |
3.3558 | 0.96 | 2600 | 3.3899 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 15
Inference API (serverless) does not yet support model repos that contain custom code.